Citation: | Zhou Ziyang, Bu Chenhao, Song Yuepeng, Zhang Deqiang, Zhang Xiaoyu. Chlorophyll fluorescence phenotypic variation in natural populations of Populus simonii[J]. Journal of Beijing Forestry University, 2024, 46(4): 52-62. DOI: 10.12171/j.1000-1522.20230030 |
Through the analysis of chlorophyll fluorescence phenotypes of Populus simonii in China, we can display the diversity of chlorophyll fluorescence phenotypes in P. simonii from multiple angles, laying a foundation for the exploration of related photosynthetic genetic mechanism.
According to the phenotypic data of chlorophyll fluorescence parameters of P. simonii in China, the variation law was explored by cluster analysis, phenotypic plasticity index and coefficient of variation calculation, dynamic fitting analysis and other methods.
(1) At a constant light intensity (same light intensity), k means clustering was applied to four chlorophyll fluorescence phenotypes of P. simonii, the optimal number of clusters was significantly influenced by light intensity. Four types of fluorescent phenotypes of P. simonii: the electron transfer rate (ETR) through photosynthetic system Ⅱ (PSⅡ), the actual light quantum yield (Yield), photochemical quenching coefficient (qP), non-photochemical quenching coefficient (qN) exhibited significant differences in different categories. (2) The calculation results of the phenotypic plasticity index and coefficient of variation of the four fluorescence parameters of P. simonii showed that the selected population had rich phenotypic plasticity under changeable resources, as the light intensity gradually increased, the phenotypic plasticity index of ETR, Yield and qN showed an overall trend of decreasing first, then increasing and then decreasing, while the phenotypic plasticity index of qN presented a decreasing trend in the whole process. This phenomenon might be related to the genetic control within each phenotype, and also reflected the different degree of response of different phenotypes to gradient light intensities; the coefficient of variation of ETR, Yield and qP showed a trend of decreasing initially and then rising with the increase of light intensity; the coefficient of variation of qN gradually decreased with the increase of light intensity, when the light intensity reached the maximum value, the coefficient of variation of all kinds of samples were less than 0.1. (3) Chlorophyll fluorescence phenotypes of P. simonii under different gradient (dynamic) light intensities can be divided into two categories after clustering. After fitting with the growth equation, it can be found that the phenotypic variation rate and the maximum (minimum) value of different categories of samples have significant differences.
Chlorophyll fluorescence phenotypes of P. simonii vary widely and are significantly affected by light intensity. Through methods, such as cluster analysis, phenotypic plasticity and coefficient of variation calculation and growth equation fitting, we can explore the changing rule of chlorophyll fluorescence phenotypes effectively, lay a foundation for genetic analysis and photosynthesis mechanism, and provide scientific guidance for the cultivation of P. simonii.
[1] |
朱婷, 康辉星, 柯心然, 等. 水稻冠层不同高度光合有效辐射动态与叶片光合作用特性研究[J]. 北京大学学报(自然科学版), 2021, 57(4): 723−732.
Zhu T, Kang H X, Ke X R, et al. Dynamics of photosynthetic active radiation and photosynthetic characteristics of rice leaves at two canopy heights[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(4): 723−732.
|
[2] |
陈美倩, 夏令, 罗睿. 不同半夏属植物光合作用相关生理特征研究[J]. 贵州大学学报(自然科学版), 2021, 38(5): 20−24, 39.
Chen M Q, Xia L, Luo R. Researches of characteristics related to photosynthesis for different species in penellia tenore[J]. Journal of Guizhou University (Natural Sciences), 2021, 38(5): 20−24, 39.
|
[3] |
齐振宇, 王婷, 桑康琪, 等. 设施番茄不同叶位补光对植株形态、光合及激素合成的影响[J]. 园艺学报, 2021, 48(8): 1504−1516.
Qi Z Y, Wang T, Sang K Q, et al. Effects of supplemental lighting at different positions on tomato plant morphology, photosynthesis and endogenous hormone biosynthesis under low-light environment[J]. Acta Horticulturae Sinica, 2021, 48(8): 1504−1516.
|
[4] |
Byeon S Y, Song W Y, Park M J, et al. Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration[J]. Journal of Plant Physiology, 2021, 265: 153489. doi: 10.1016/j.jplph.2021.153489
|
[5] |
窦沛彤, 刘方炎, 高成杰, 等. 红河干热河谷不同植物光合作用及抗逆生理特性[J]. 东北林业大学学报, 2021, 49(7): 56−65.
Dou P T, Liu F Y, Gao C J, et al. Photosynthetic physiological characteristics and adaptation to dry and hot environment of different plants in the dry-hot valley of honghe[J]. Journal of Northeast Forestry University, 2021, 49(7): 56−65.
|
[6] |
黄雅茹, 马迎宾, 迟悦春, 等. 不同栽植年限小叶杨与胡杨杂交种(小 × 胡杨)光合响应特性比较[J]. 西北林学院学报, 2021, 36(4): 34−40.
Huang Y R, Ma Y B, Chi Y C, et al. Comparsion of photosynthetic response characteristics of Populus simonii × P. euphratica with different planting years[J]. Journal of Northwest Forestry University, 2021, 36(4): 34−40.
|
[7] |
郑钢, 顾翠花, 王杰, 等. 干旱胁迫对黄薇光合特性和若干生理生化指标的影响[J]. 浙江农业学报, 2021, 33(9): 1650−1659.
Zheng G, Gu C H, Wang J, et al. Effects of drought stress on photosynthetic characteristics and several physiological and biochemical indexes of Heimia myrtifolia Cham. et Schlechtend[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1650−1659.
|
[8] |
李亚东, 许晓凯, 李唯, 等. 荧光碳点调控植物光合作用研究进展[J]. 发光学报, 2021, 42(8): 1172−1181. doi: 10.37188/CJL.20210019
Li Y D, Xu X K, Li W, et al. Progress of carbon dots regulating plant photosynthesis[J]. Chinese Journal of Luminescence, 2021, 42(8): 1172−1181. doi: 10.37188/CJL.20210019
|
[9] |
于佳, 匡鲁璐, 王巧晗, 等. 漂浮型铜藻与养殖裙带菜的光合作用、生长和物质积累的差异及其在两种藻竞争中的作用[J]. 中国海洋大学学报(自然科学版), 2021, 51(8): 1−10.
Yu J, Kuang L L, Wang Q H, et al. Differences in photosynthesis, growth and resource accumulation between drifting alga Sargassum horneri and cultured alga Undaria pinnatifida and their roles in interspecies competition[J]. Periodical of Ocean University of China, 2021, 51(8): 1−10.
|
[10] |
白彩虹, 何蓓如, 胡银岗, 等. 19种山羊草细胞质对普通小麦F94-111光合性状的遗传效应研究[J]. 西北农林科技大学学报(自然科学版), 2009, 37(1): 98−104.
Bai C H, He B R, Hu Y G, et al. Comparative study on genetic effects of allocytoplasm on photosynthetic characterstics of Triticum aestivum[J]. Journal of Northwest A&F University (Natural Science Edition), 2009, 37(1): 98−104.
|
[11] |
许国春, 罗文彬, 李华伟, 等. 马铃薯叶片光合效率遗传变异分析及高光效种质筛选[J]. 园艺学, 2021, 48(11): 2239−2250.
Xu G C, Luo W B, Li H W, et al. Screening for genetic variation in photosynthesis and high photosynthetic efficiency germplasm in potato[J]. Acta Horticulturae Sinica, 2021, 48(11): 2239−2250.
|
[12] |
李纯佳, 覃伟, 徐超华, 等. 国外引进甘蔗栽培品种的光合气体交换参数遗传差异与聚类分析[J]. 中国农业科学, 2018, 51(12): 2288−2299.
Li C J, Qin W, Xu C H, et al. Genetic variations and cluster analysis of photosynthetic gas exchange parameters in exotic sugarcane cultivars[J]. Scientia Agricultura Sinica, 2018, 51(12): 2288−2299.
|
[13] |
Zhang P, Zhang Z, Li B, et al. Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters[J]. Scientific Reports, 2020, 10(1): 3013. doi: 10.1038/s41598-020-59741-6
|
[14] |
次东. 逆境胁迫下小叶杨基因组DNA甲基化变异及其表观基因型效应[D]. 北京: 北京林业大学, 2020.
Ci D. DNA methylation variation and epigenotype effect of Populus simonii under abiotic stress[D]. Beijing : Beijing Forestry University, 2020.
|
[15] |
Wei Z, Du Q, Zhang J, et al. Genetic diversity and population structure in Chinese indigenous poplar (Populus simonii) populations using microsatellite markers[J]. Plant Molecular Biology Reporter, 2013, 31: 620−632. doi: 10.1007/s11105-012-0527-2
|
[16] |
Chen J H, Song Y P, Zhang H, et al. Genome-wide analysis of gene expression in response to drought stress in Populus simonii[J]. Plant Molecular Biology Reporter, 2013, 31(4): 946−962. doi: 10.1007/s11105-013-0563-6
|
[17] |
Liu Z H, Jia G D, Yu X X, et al. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region[J]. Agricultural Water Management, 2021, 253: 106943. doi: 10.1016/j.agwat.2021.106943
|
[18] |
Du Q Z, Wei Z Z, Zhao X, et al. Dissection of additive, dominant, epistatic roles of allelic variation within heat shock factor genes in Chinese indigenous poplar (Populus simonii)[J]. Tree Genetics & Genomes, 2016, 12: 1−15.
|
[19] |
Xu J H, Du R Y, Meng X X, et al. Third-generation sequencing indicated that LncRNA could regulate eIF2D to enhance protein translation under heat stress in Populus simonii[J]. Plant Molecular Biology Reporter, 2021, 39: 240−250. doi: 10.1007/s11105-020-01245-8
|
[20] |
Zhu L L, Wen W, Thorpe M R, et al. Combining heat stress with pre-existing drought exacerbated the effects on chlorophyll fluorescence rise kinetics in four contrasting plant species[J]. International Journal of Molecular Sciences, 2021, 22(19): 10682. doi: 10.3390/ijms221910682
|
[21] |
杨贺雨, 卫海燕, 桑满杰, 等. 华中五味子叶表型可塑性及环境因子对叶表型的影响[J]. 植物学报, 2016, 51(3): 322−334. doi: 10.11983/CBB15024
Yang H Y, Wei H Y, Sang M J, et al. Phenotypic plasticity of Schisandra sphenanthera leaf and the effect of environmental factors on leaf phenotype[J]. Chinese Bulletin of Botany, 2016, 51(3): 322−334. doi: 10.11983/CBB15024
|
[22] |
王姝, 周道玮. 植物表型可塑性研究进展[J]. 生态学报, 2017, 37(24): 8161−8169.
Wang S, Zhou D W. Research on phenotypic plasticity in plants: an overview of history, current status, and development trends[J]. Acta Ecologica Sinica, 2017, 37(24): 8161−8169.
|
[23] |
Holloway G J. Phenotypic plasticity: beyond nature and nurture[J]. Nature Publishing Group, 2002(6): 410.
|
[24] |
Jiang L, He X, Jin Y, et al. A mapping framework of competition–cooperation QTLs that drive community dynamics[J]. Nature Communications, 2018, 9(1): 1−12. doi: 10.1038/s41467-017-02088-w
|
[25] |
Fu L, Sun L, Hao H, et al. How trees allocate carbon for optimal growth: insight from a game-theoretic model[J]. Briefings in Bioinformatics, 2018, 19(4): 593−602. doi: 10.1093/bib/bbx003
|
[26] |
Pau C. Metabolism as a screenwriter in the female–male coevolutionary play[J]. Proceedings of the National Academy of Sciences, 2022, 119(39): e2213208119.
|
[27] |
Pan J, Lin S, Woodbury N W. Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centers with the primary donor oxidized[J]. Journal of Physical Chemistry B, 2012, 116(6): 2014. doi: 10.1021/jp212441b
|
[28] |
Ci D, Song Y, Du Q, et al. Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits[J]. Journal of Experimental Botany, 2016(3): 723−737.
|
[29] |
You X, Gong J R, Ge Z W, et al. Light energy utilization and chlorophyll fluorescence in two crossbreed poplars[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1148−1155.
|
[30] |
Zhao X, Li Y, Zheng M, et al. Comparative analysis of growth and photosynthetic characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) hybrid clones of different ploidides[J]. PLoS One, 2015, 10(4): e0119259. doi: 10.1371/journal.pone.0119259
|
[31] |
Jovanić B R, Radenković B, Despotović-Zrakić M, et al. Effect of UV-B radiation on chlorophyll fluorescence, photosynthetic activity and relative chlorophyll content of five different corn hybrids[J]. Journal of Photochemistry and Photobiology, 2022, 10: 100115. doi: 10.1016/j.jpap.2022.100115
|
1. |
李东来,张文华,张宏斌,陈淑鑫. 产品喷涂装置Fluent仿真内部流场数值分析. 现代制造技术与装备. 2022(07): 50-53 .
![]() |