Citation: | Xie Chen, Zhang Yang. Effects of deep eutectic solvents pretreatment on performance of surface mineralized wood[J]. Journal of Beijing Forestry University, 2024, 46(7): 123-132. DOI: 10.12171/j.1000-1522.20240067 |
In order to solve the problems of difficult penetration and less mineralization sites in wood mineralization modification, deep eutectic solvent (DES) pretreatment was used to open the penetration channel and construct active sites of fast-growing poplar, and the effects of DES pretreatment on the properties of surface mineralized wood were studied.
Poplar wood was pretreated with DES to construct mineralization sites, and SiO2 was induced to realize in-situ mineralization on the wood surface. Then surface mineralized wood was prepared by hot pressing. The effects of DES pretreatment on physical and mechanical properties of surface mineralized wood were analyzed. Surface-mineralized wood was prepared under optimal conditions, and its microstructure morphology and thermal properties were analyzed.
(1) The density, mass gain rate and surface hardness of surface mineralized wood increased at first and then decreased with the increase of DES pretreatment time, and increased by 35.25%, 16.35% and 51.53%, respectively when pretreated for 2 h compared with untreated wood. The hydrophobicity of surface mineralized wood was greatly improved, and the initial contact angle increased by 74.08% after 0.5 h pretreatment. (2) DES pretreatment can significantly improve the mechanical properties of surface mineralized wood. When DES pretreatment time was 2 h, the modulus of rupture and elasticity of surface mineralized wood increased by 20.53% and 214.55%, respectively. (3) The surface mineralization treatment introduced SiO2 into the wood to form an organic-inorganic hybrid structure, which improved the fire resistance of wood. When the surface mineralized wood was pretreated for 2 h, the mass residual ratio of the surface mineralized wood increased by 70.81% compared with the untreated wood, and the heat release rate reduced by 69.9 kW/m2, and the total heat release reduced by 27.3 MJ/m2.
After DES pretreatment and surface mineralization, the physical and mechanical properties of fast-growing poplar are improved, and the thermal stability and fire resistant properties are good.
[1] |
Yang T, Xia M, Chen S, et al. Enhancing the thermal stability of silica-mineralized wood via layer-by-layer self-assembly[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(2): 309−318. doi: 10.1007/s10973-020-09786-6
|
[2] |
陈世尧, 袁光明, 杨涛, 等. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182−10186. doi: 10.11896/cldb.19070157
Chen S Y, Yuan G M, Yang T, et al. Synergistic modification of eucalyptus urophylla wood by chitosan-SiO2 biomimetic mineralization[J]. Materials Reports, 2020, 34(10): 10182−10186. doi: 10.11896/cldb.19070157
|
[3] |
刘永壮. 低共熔溶剂对木质资源组分高效分离和转化利用[D]. 哈尔滨: 东北林业大学, 2019.
Liu Y Z. Efficient lignocellulosic resources fractionation and valorization in deep eutectic solvents[D]. Harbin: Northeast Forestry University, 2019.
|
[4] |
中国林业科学研究院木材工业研究所. 无疵小试样木材物理力学性质试验方法: GB/T 1927.9—2021[S]. 北京: 中国标准出版社, 2021.
Research Institute of Wood Industry, Chinese Academy of Forestry. Test methods for physical and mechanical properties of small clear wood specimens: GB/T 1927.9−2021[S]. Beijing: Standards Press of China, 2021.
|
[5] |
Ran Y, Lu D, Jiang J, et al. Deep eutectic solvents-assisted wood densification: a promising strategy for shape-fixation[J]. Chemical Engineering Journal, 2023, 471: 144476. doi: 10.1016/j.cej.2023.144476
|
[6] |
Francisco M, Den B, Adriaan V, et al. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153−2157.
|
[7] |
Yahyaee S M H, Dastoorian F, Ghorbani M, et al. Combined effect of organosolv delignification/polymerization on the set recovery of densified poplar wood[J]. European Journal of Wood and Wood Products, 2022, 80(2): 367−375. doi: 10.1007/s00107-021-01756-5
|
[8] |
Guo J, Wang C, Li C, et al. Effect of acetylation on the physical and mechanical performances of mechanical densified spruce wood[J]. Forests, 2022, 13(10): 1−10.
|
[9] |
李航. 二氧化硅矿化杨木复合材料制备与性能研究[D]. 长沙: 中南林业科技大学, 2022.
Li H. Preparation and properties of silica mineralized poplar composites[D]. Changsha: Central South University of Forestry and Technology, 2022.
|
[10] |
Xia S, Baker G A, Li H, et al. Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification[J]. Rsc Advances, 2014, 4(21): 10586−10596. doi: 10.1039/c3ra46149a
|
[11] |
Alvarez-Vasco C, Ma R, Quintero M. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133−5141. doi: 10.1039/C6GC01007E
|
[12] |
Zhu Y, Yu Z, Zhu J, et al. Developing flame-retardant lignocellulosic nanofibrils through reactive deep eutectic solvent treatment for thermal insulation[J]. Chemical Engineering Journal, 2022, 445: 136748. doi: 10.1016/j.cej.2022.136748
|
[13] |
高志强. 木材层状压缩可控性机理及其变形固定研究[D]. 北京: 北京林业大学, 2019.
Gao Z Q. Controllability mechanism and deformation fixation of wood sandwich compression[D]. Beijing: Beijing Forestry University, 2019.
|
[14] |
Salama A, Hesemann P. Synthesis and characterization of N-guanidinium chitosan/silica ionic hybrids as templates for calcium phosphate mineralization[J]. International Journal of Biological Macromolecules, 2020, 147: 276−283. doi: 10.1016/j.ijbiomac.2020.01.046
|
[15] |
Shabir M M, Hübert T, Sabel M, et al. Fire retardancy of sol-gel derived titania wood-inorganic composites[J]. Journal of Materials Science, 2012, 47(19): 6849−6861. doi: 10.1007/s10853-012-6628-3
|
[16] |
Liu Q, Chai Y, Ni L, et al. Flame retardant properties and thermal decomposition kinetics of wood treated with boric acid modified silica sol[J]. Materials, 2020, 13(20): 4478. doi: 10.3390/ma13204478
|
[17] |
French A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2): 885−896. doi: 10.1007/s10570-013-0030-4
|
[18] |
Flamini D O, Trueba M, Trasatti S P. Aniline-based silane as a primer for corrosion inhibition of aluminium[J]. Progress in Organic Coatings, 2012, 74(2): 302−310. doi: 10.1016/j.porgcoat.2011.11.011
|
[19] |
Trueba M, Trasatti S P. Pyrrole-based silane primer for corrosion protection of commercial Al alloys[J]. Progress in Organic Coatings, 2009, 66(3): 254−264. doi: 10.1016/j.porgcoat.2009.08.004
|
[20] |
Jiang S, Tang G, Chen J, et al. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin[J]. Journal of Hazardous Materials, 2018, 342: 689−697. doi: 10.1016/j.jhazmat.2017.09.001
|
[21] |
Lazar S T, Kolibaba T J, Grunlan J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020, 5(4): 259−275. doi: 10.1038/s41578-019-0164-6
|
[22] |
何梦凡, 李晓玉, 连海兰, 等. 木材阻燃技术的研究进展[J]. 林业机械与木工设备, 2022, 50(3): 21−29, 36. doi: 10.3969/j.issn.2095-2953.2022.03.005
He M F, Li X Y, Lian H L, et al. Research progress in wood fire retardant technology[J]. Forestry Machinery & Woodworking Equipment, 2022, 50(3): 21−29, 36. doi: 10.3969/j.issn.2095-2953.2022.03.005
|
[23] |
Pan M, Mei C, Du J, et al. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites[J]. Composites Part a: Applied Science and Manufacturing, 2014, 66: 128−134. doi: 10.1016/j.compositesa.2014.07.016
|
[24] |
Mingzhu P, Hailan L, Changtong M. Flammability of nano silicon dioxide–wood fiber–polyethylene composites[J]. Journal of Composite Materials, 2013, 47(12): 1471−1477. doi: 10.1177/0021998312448499
|
[25] |
潘明珠, 梅长彤. 纳米SiO2-APP对木塑复合材料界面特性及力学性能的影响[J]. 北京林业大学学报, 2013, 35(5): 117−122.
Pan M Z, Mei C T. Effects of nano SiO2-ammonium polyphosphate on the interfacial and mechanical properties of wood fiber-polyethylene composites[J]. Journal of Beijing Forestry University, 2013, 35(5): 117−122.
|
1. |
黄康庭,周娟,陈晓龙,艾辉辉,梁明伟,王荣洁,余平福. 广西珍贵乡土树种人工林林下植物的多样性. 桉树科技. 2025(01): 49-56 .
![]() | |
2. |
符航,谭国华,刘玮,蔡奇良,王琼,潘峰. 基于CiteSpace和VOSviewer软件的城市土壤食物网研究趋势分析. 生物灾害科学. 2025(01): 51-65 .
![]() | |
3. |
江姗,魏天兴,范德卉,于欢,叶小曼,谢宇,李世杰. 晋西黄土区沟谷不同部位植物多样性. 北京林业大学学报. 2024(06): 20-27 .
![]() |