• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CHENG Xiang, ZHANG Mei, MAO Jian-feng, NIU Shi-hui, WU Jun, LI Wei, LI Yue. Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard.[J]. Journal of Beijing Forestry University, 2016, 38(9): 8-15. DOI: 10.13332/j.1000-1522.20150486
Citation: CHENG Xiang, ZHANG Mei, MAO Jian-feng, NIU Shi-hui, WU Jun, LI Wei, LI Yue. Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard.[J]. Journal of Beijing Forestry University, 2016, 38(9): 8-15. DOI: 10.13332/j.1000-1522.20150486

Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard.

More Information
  • Received Date: December 10, 2015
  • Published Date: September 29, 2016
  • A total of 63 clone parents (there was repeat in the clonal parents) and 320 open-pollination progenies were identified by 10 polymorphic SSR loci from three configuration areas of a Pinus tabuliformis seed orchard. We chose the parent and progeny population of ninth configuration area as for our study on the relationship between fixed configuration and mating system. The results showed there was a high genetic diversity in the seed orchard, progeny population had all alleles detected in parent population, and even had some new alleles absent in parent population. In the analysis of the mating system at 80% confidence level, the exchange rate of the configuration area had reached 100%, indicating that most of the mating system of P. tabuliformis seed orchard was based on outcrossing under the fixed configuration. The average neighbor mating rate (7.07 m) was 21.90%; the rate within and beyond 40 m was 71.43% and 6.67%, respectively, indicating that the distribution of pollen in the fixed configuration was relatively uniform, and the range of pollen dispersal was widespread. As to the study of gene exchange between the configuration areas, we found that each of configuration area was affected by pollen from the other two configuration areas to different degrees, indicating that the gene exchange between each configuration area was relatively sufficient. In addition, we found the rate of contamination by pollen outside the seed orchard was as high as 11.88%.
  • [1]
    EL-KASSABY Y A, STOEHR M U, REID D, et al. Clonal-row versus random seed orchard designs: interior spruce mating system evaluation[J]. Canadian Journal of Forest Research, 2007, 37(3): 690-696.
    [1]
    LEXER C, HEINZE B, GERBER S, et al. Microsatellite analysis of maternal half-sib families of Quercus robur, Pedunculate oak: inferring the number of pollen donors from the offspring[J]. Theoretical and Applied Genetics, 99(1): 185-191.
    [2]
    张春晓,李悦.油松同工酶位点选择研究[J].北京林业大学学报,1999,21(1):11-16.
    [3]
    ZHANG C X, LI Y. The choice of isozyme markers in Pinus tabulaeformis Carr[J]. Journal of Beijing Forestry University, 1999, 21(1):11-16.
    [4]
    张冬梅,李悦,沈熙环,等. 油松改良系统中的三种群体交配体系[J].北京林业大学学报,2000,22(5):11-18.
    [5]
    ZHANG D M, LI Y, SHEN X H, et al. A primary study on the mating system of three different populations within one improvement procedure of Pinus tabulaeformis Carr[J]. Journal of Beijing Forestry University, 2000, 22(5):11-18.
    [6]
    ADAMS W T, HIPKINS V D, BURCZYK J, et al. Pollen contamination trends in a maturing Douglas-fir seed orchard[J]. Canadian Journal of Forest Research, 1997, 27: 131-134.
    [7]
    李明,王树香,高宝嘉.油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析[J].生态学报,2013,33(12):3602-3610.
    [8]
    LI M, WANG S X, GAO B J. Analysis of genetic diversity of Chinese pine (Pinus tabulaeformis) natural secondary forest population and correlation with theirs habitat ecological factors[J]. Acta Ecological Sinical, 2013, 33(12):3602-3610.
    [9]
    罗兵,孙海燕,徐港明,等.SSR分子标记研究进展[J].安徽农业科学,2013,41(12):5210-5212,5246.
    [10]
    LUO B, SUN H Y, XU G M, et al. Research progress of SSR molecular marker[J]. Journal of Anhui Agricultural Sciences, 2013, 41(12): 5210-5212, 5246.
    [11]
    谭小梅,周志春,金国庆.马尾松二代种子园遗传多样性和交配系统分析[J].林业科学,2012,48(2):69-74.
    [12]
    TAN X M, ZHOU Z C, JIN G Q. Genetic diversity and mating system analysis of Pinus massoniana in a second-generation clonal seed orchard[J]. Scientia Silvae Sinicae, 2012,48(2):69-74.
    [13]
    ASHLEY M V. Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape[J]. Critical Reviews in Plant Sciences, 2010, 29(3):148-161.
    [14]
    LEONARDUZZI C, LEONARDI S, MENOZZI P, et al. Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us?[J]. iForest, 2012, 5: 18-25.
    [15]
    龚佳.马尾松实生种子园遗传多样性研究[D].南京:南京林业大学,2007:21-26.
    [16]
    GONG J. Genetic diversity of a seed orchard in Pinus massoniana[D]. Nanjing: Nanjing Forestry University, 2007: 21-26.
    [17]
    张薇,龚佳,季孔庶.马尾松实生种子园遗传多样性分析[J].分子植物育种,2008,4(6):717-723.
    [18]
    ZHANG W, GONG J, JI K S. Genetic diversity for seedling orchard of Massons pine[J]. Molecular Plant Breeding, 2008, 4(6):717-723.
    [19]
    艾畅,徐立安,赖焕林,等.马尾松种子园的遗传多样性与父本分析[J].林业科学,2006,42(11):146-150.
    [20]
    AI C, XU L A,LAI H L, et al. Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana[J]. Scientia Silvae Sinicae, 2006, 42(11):146-150.
    [21]
    王鹏良.马尾松无性系种子园多年分子代遗传多样性分析[D].南京:南京林业大学,2006:17-23.
    [22]
    WANG P L. Years of molecular generation of genetic diversity analysis of Pinus massoniana in a clonal seed orchard[D]. Nanjing: Nanjing Forestry University, 2006: 17-23.
    [23]
    李悦,张春晓.油松育种系统遗传多样性研究[J].北京林业大学学报,2000,22(1):12-19.
    [24]
    LI Y, ZHANG C X. Genetic diversity within a breeding system of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2000, 22(1):12-19.
    [25]
    FENG F J, ZHAO D, SUI X, et al. Study on mating system of Pinus koraiensis in natural population based on cpSSR technology[J]. Advanced Materials Research, 2011, 183-185:700-704.
    [26]
    KORSHIKOVI I, DEMKOVICH A E. Genetic polymorphism of plus-tree clones and their seed progeny in the Scotch pine clone plantation[J]. Cytology and Genetics, 2010,44(1):28-36.
    [27]
    张华新,沈熙环.林木种子园生殖系统研究进展[J].林业科学,2002,38(2):129-134.
    [28]
    ZHANG H X, SHEN X H. Progress on reproductive system of forest seed orchard[J]. Scientia Silvae Sinicae, 2002, 38(2):129-134.
    [29]
    WANG X R, TORIMARU T, LINDGREN D,et al. Marker-based parentage analysis facilitates low input breeding without breeding strategies for forest trees[J]. Tree Genetics Genomes, 2010,6(2):227-235.
    [30]
    张冬梅,孙佩光,沈熙环,等.油松种子园自由授粉与控制授粉种子父本分析[J].植物生态学报,2009,33 (2): 302-310.
    [31]
    ZHANG D M, SUN P G, SHEN X H, et al. Paternity analysis of open and control pollination seeds collected from a seed orchard of Pinus tabulaeformis[J]. Chinese Journal of Plant Ecology, 2009, 33(2):302-310.
    [32]
    张冬梅,杨娅,沈熙环,等.油松SSR-PCR引物筛选及反应体系的建立[J].北京林业大学学报,2007,29(2):13-17.
    [33]
    ZHANG D M, YANG Y, SHEN X H, et al. Selection of primers and establishment of SSR-PCR reaction system on Pinus tabulaeformis Carr[J]. Journal Of Beijing Forestry University, 2007,29(2):13-17.
    [34]
    BURCZYK J, LEWANDOWSKI A, CHALUPKA W. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.)[J]. Forest Ecology and Management, 2004, 197:39-48.
    [35]
    LINDGREN D.Picea abies breeding in Sweden is based on clone testing[J]. Dendrobiology, 2009,61(Suppl.): 79-82.
    [36]
    PLUESS A R, SORK V L, DOLAN B, et al. Short distance pollen movement in a wind-pollinated tree,Quercus lobata (Fagaceae)[J]. Forest Ecology and Management, 2009,258(5):735-744.
    [37]
    AYAKO S, WANG X R, TAKESHI T, et al. Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel breeding without breeding strategy[J]. Tree Genetic Genomes, 2011, 7(3):499-509.
    [38]
    PAKKAD G, UENO S, YOSHIMARU H. Gene flow pattern and mating system in a small population of Quercus semiserrata Roxb. (Fagaceae)[J]. Forest Ecology and Management, 2008: 255(11):3819-3826.
    [39]
    TORIMARU T, WANG X R, FRIES A, et al. Evaluation of pollen contamination in an advanced Scots pine seed orchard[J]. Silvae Genetica, 2009, 58(5-6):262-269.
  • Related Articles

    [1]Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]Lin Qinyu, Wen Chengsheng, Diao Yue, Yan Lirong, Gao Ying. Mechanical properties of CLT shear connections between self-tapping screws and mortise tenons[J]. Journal of Beijing Forestry University, 2019, 41(11): 146-154. DOI: 10.13332/j.1000-1522.20190209
    [5]Guan Cheng, Liu Jinhao, Zhang Houjiang, Zhou Lujing. Literature review of mechanical properties of full-size wood composite panels using nondestructive testing technique[J]. Journal of Beijing Forestry University, 2019, 41(9): 164-172. DOI: 10.13332/j.1000-1522.20180379
    [6]Su Ling, Pang Jiuyin, Ren Shixue, Li Shujun, Jiang Guiquan. Preparation of lignin-based polyelectrolyte film and its mechanical properties[J]. Journal of Beijing Forestry University, 2019, 41(2): 125-133. DOI: 10.13332/j.1000-1522.20180281
    [7]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [8]PAN Ming-zhu, MEI Chang-tong.. Effects of nano SiO2-ammonium polyphosphate on the interfacial and mechanical properties of wood fiber-polyethylene composites.[J]. Journal of Beijing Forestry University, 2013, 35(5): 117-122.
    [9]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [10]YU Yan, WANG Ge, FEI Ben-hua, CAO Shuang-ping, HUANG Yan-hui, CHEN Lu-tie. Development and application of microtester for mechanical property determination of short plant fibers.[J]. Journal of Beijing Forestry University, 2010, 32(3): 150-154.
  • Cited by

    Periodical cited type(4)

    1. 熊海贝,武喆,陈佳炜. 正交胶合木新型抗剪及抗拉连接耗能特性试验. 同济大学学报(自然科学版). 2024(05): 684-696+652 .
    2. 张晋,姜坤,陆川. 正交胶合木墙体-楼板角撑连接节点受火后受剪承载力计算方法. 东南大学学报(自然科学版). 2022(01): 65-73 .
    3. 常程,方毅飞,刘义凡,阙泽利. 斜螺钉在正交胶合木中的抗拔性能研究. 建筑技术. 2019(04): 416-418 .
    4. 刁玥,贾贺然,孟鑫淼,高颖,张佳男. CLT墙体-楼板T型连接抗剪性能特征值分析方法对比研究. 北京林业大学学报. 2019(08): 147-153 . 本站查看

    Other cited types(7)

Catalog

    Article views (1870) PDF downloads (29) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return