• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xie Jiangjian, Li Wenbin, Zhang Junguo, Ding Changqing. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. DOI: 10.13332/j.1000-1522.20180008
Citation: Xie Jiangjian, Li Wenbin, Zhang Junguo, Ding Changqing. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. DOI: 10.13332/j.1000-1522.20180008

Bird species recognition method based on Chirplet spectrogram feature and deep learning

More Information
  • Received Date: January 04, 2018
  • Revised Date: January 16, 2018
  • Published Date: February 28, 2018
  • ObjectiveThe application of deep learning in bird species recognition is the research hotspot at present. To improve the performance of recognition, a bird species recognition method based on Chirplet spectrogram feature and VGG16 model was proposed.
    MethodAcoustic signal spectrograms were calculated by the Chirplet transform firstly, then spectrograms were inputted in the VGG16 model to realize the recognition of bird species. Taking eighteen bird species in Beijing Songshan National Nature Reserve as examples, through Chirplet transform, Fourier transform and Mel cepstrum transform, three spectrogram sample sets were calculated respectively, then using three kinds of spectrogram sample sets to train the recognition model, the performances of each input were compared.
    ResultResults showed that with the Chirplet diagram input, the highest mean average precision (MAP) of the test set was 0.9871 compared with the other two inputs. Also, the epochs of the highest trainning MAP was the smallest.
    ConclusionThe choice of input affects the classification performance of deep learning model. The vocalization zone of Chirplet spectrogram is more concentrate and obvious than STFT spectrogram and Mel spectrogram, which means Chirplet spectrogram is more suitable for the bird recognition based on VGG16 model, higher MAP and efficiency of recognition can be achieved.
  • [1]
    范宗骥, 董大颖, 郑然, 等.北京静福寺侧柏古树林鸟类群落多样性研究[J].北京林业大学学报, 2013, 35(5):46-55. http://j.bjfu.edu.cn/article/id/9946

    Fan Z J, Dong D Y, Zheng R, et al. Avian community diversity in Platycladus orientalis ancient trees at the Jingfu Temple in Beijing[J]. Journal of Beijing Forestry University, 2013, 35(5): 46-55. http://j.bjfu.edu.cn/article/id/9946
    [2]
    Green S, Marler P. The analysis of animal communication[M]. New York: Springer US, 1979.
    [3]
    Xia C, Huang R, Wei C, et al. Individual identification on the basis of the songs of the Asian stubtail (Urosphena squameiceps)[J]. Chinese Birds, 2011, 2(3):132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnl201103003
    [4]
    Tan L N, Abeer A, George K, et al. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data[J]. Journal of the Acoustical Society of America, 2015, 137(3): 1069-1080. doi: 10.1121/1.4906168
    [5]
    Lee C H, Hsu S B, Shih J L, et al. Continuous birdsong recognition using gaussian mixture modeling of image shape features[J]. IEEE Transactions on Multimedia, 2012, 15(2): 454-464. http://cn.bing.com/academic/profile?id=e4bbf99759b51b973a3e5c45e7dd4003&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Kalan A K, Mundry R, Wagner O J J, et al. Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring[J]. Ecological Indicators, 2015, 54: 217-226. doi: 10.1016/j.ecolind.2015.02.023
    [7]
    Stowell D, Plumbley M D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning[J]. PeerJ, 2014, 2(4): 1-24. http://cn.bing.com/academic/profile?id=c20d2857a0134c74d381699d4fe15859&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    程金魁.基于鸣声的鸟类物种个体识别及鸣声关系分析[D].北京: 中国科学院大学, 2012.

    Cheng J K. Automatic bird species and individual recognition and the analysis of bird vocalizations[D]. Beijing: University of Chinese Academy of Sciences, 2012.
    [9]
    Koops H V, van Baben J, Wiering F, et al. A deep neural network approach to the LifeCLEF 2014 bird task[J]. CLEF Working Notes, 2014, 1180:1-9. http://cn.bing.com/academic/profile?id=0bb5fd3074758e9e3c0d71db28b2cf5c&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Piczak K J. Recognizing bird species in audio recordings using deep convolutional neural networks[J]. CLEF Working Notes, 2016, 1609: 534-543. http://cn.bing.com/academic/profile?id=1daede1d019bd15cd65f166b76e64554&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    TÓth B P, Czeba B. Convolutional neural networks for large-scale bird song classification in noisy environment[C]. Évora, Portugal: Conference and Labs of the Evaluation Forum, 2016: 1-9.
    [12]
    张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035

    Zhang S, Huai Y J. Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
    [13]
    刘念, 阚江明.基于多特征融合和深度信念网络的植物叶片识别[J].北京林业大学学报, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267

    Liu N, Kan J M. Plant leaf identification based on the multi feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267
    [14]
    Chen C, Liu M, Liu H, et al. Multi-temporal depth motion maps-based local binary patterns for 3-D human action recognition[J]. IEEE Access, 2017, 5:22590-22604. doi: 10.1109/ACCESS.2017.2759058
    [15]
    周飞燕, 金林鹏, 董军, 卷积神经网络研究综述[J].计算机学报, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001

    Zhou F Y, Jin L P, Dong J. Review of convolutional neural network journal of computer applications[J]. Chinese Journal of Computers, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001
    [16]
    Hou R, Chen C, Shah M. Tube convolutional neural network (T-CNN) for action detection in videos[J]. IEEE International Conference on Computer Vision, 2017: 1-11. http://cn.bing.com/academic/profile?id=6a4f72d6728bcc8ce81219f3b6718b07&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014: 1-14. http://cn.bing.com/academic/profile?id=9a83dddfc646cd21a3e38737d303a369&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    Zou J, Li W, Chen C, et al. Scene classification using local and global features with collaborative representation fusion[J]. Information Sciences, 2016, 348:209-226. doi: 10.1016/j.ins.2016.02.021
    [19]
    Triantafyllidou D, Nousi P, Tefas A. Fast deep convolutional face detection in the wild exploiting hard sample mining[J]. Big Data Research, 2017, 3:1-24. http://cn.bing.com/academic/profile?id=3c1228dfffdc126a1ea8dc2633aedfd0&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    Uricchio T, Ballan L, Seidenari L, et al. Automatic image annotation via label transfer in the semantic space[J]. Pattern Recognition, 2017, 6: 1-15. http://cn.bing.com/academic/profile?id=423cea00e0ba24bcdb4bcf40c1cf3ce9&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Bultan A. A four-parameter atomic decomposition of Chirplets[J]. IEEE Transactions on Signal Processing, 2002, 47(3):731-745. http://cn.bing.com/academic/profile?id=a00d5e651922ddf7fe4864eb641d7751&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Glotin H, Ricard J, Balestriero R. Fast Chirplet transform to enhance CNN machine listening-validation on animal calls and speech[J]. arXiv, 2017: 1-22. http://cn.bing.com/academic/profile?id=0dcb90d45913b47851b3f80464eb30e6&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Potamitis I, Ntalampiras S, Jahn O, et al. Automatic bird sound detection in long real-field recordings: applications and tools[J]. Applied Acoustics, 2014, 80(4): 1-9. http://cn.bing.com/academic/profile?id=ec7738dfaa30c2c81477679e08f86bf9&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Sun Zhilin, Liu Bing, Li Xiaowei, Tian Yuzhen, Zhang Qing, Cao Qingqin. Functional research of transcription factor CmHAT1 regulating the development of somatic embryo in Castanea mollissima[J]. Journal of Beijing Forestry University, 2024, 46(5): 73-81. DOI: 10.12171/j.1000-1522.20230215
    [4]Li Yapeng, Sun Yuhan, Lin Huazhong, Fang Luming, Yu Xiaolong, Weng Jianyu, Zhang Yungen, Li Yun. Correlations between microsporogenesis and male cone development of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(1): 51-58. DOI: 10.12171/j.1000-1522.20210251
    [5]Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040
    [6]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [7]LI Zhe-xin, NIU Shi-hui, GAO Qiong, LI Wei.. Cytological study of gibberellin regulated xylem development.[J]. Journal of Beijing Forestry University, 2014, 36(2): 68-73.
    [8]MA Yu-lei, TANG Xing-lin, LI Xiao-yuan, PAN Hui-tang, ZHANG Qi-xiang.. Effects of photoperiod and temperature on growth and development of Primula maximowiczii.[J]. Journal of Beijing Forestry University, 2013, 35(5): 97-103.
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96.
  • Cited by

    Periodical cited type(7)

    1. 翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
    2. 罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
    3. 童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
    4. 肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
    5. 张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
    6. 何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 . 本站查看
    7. 刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 . 本站查看

    Other cited types(3)

Catalog

    Article views (3534) PDF downloads (143) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return