Citation: | Xie Jiangjian, Li Wenbin, Zhang Junguo, Ding Changqing. Bird species recognition method based on Chirplet spectrogram feature and deep learning[J]. Journal of Beijing Forestry University, 2018, 40(3): 122-127. DOI: 10.13332/j.1000-1522.20180008 |
[1] |
范宗骥, 董大颖, 郑然, 等.北京静福寺侧柏古树林鸟类群落多样性研究[J].北京林业大学学报, 2013, 35(5):46-55. http://j.bjfu.edu.cn/article/id/9946
Fan Z J, Dong D Y, Zheng R, et al. Avian community diversity in Platycladus orientalis ancient trees at the Jingfu Temple in Beijing[J]. Journal of Beijing Forestry University, 2013, 35(5): 46-55. http://j.bjfu.edu.cn/article/id/9946
|
[2] |
Green S, Marler P. The analysis of animal communication[M]. New York: Springer US, 1979.
|
[3] |
Xia C, Huang R, Wei C, et al. Individual identification on the basis of the songs of the Asian stubtail (Urosphena squameiceps)[J]. Chinese Birds, 2011, 2(3):132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnl201103003
|
[4] |
Tan L N, Abeer A, George K, et al. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data[J]. Journal of the Acoustical Society of America, 2015, 137(3): 1069-1080. doi: 10.1121/1.4906168
|
[5] |
Lee C H, Hsu S B, Shih J L, et al. Continuous birdsong recognition using gaussian mixture modeling of image shape features[J]. IEEE Transactions on Multimedia, 2012, 15(2): 454-464. http://cn.bing.com/academic/profile?id=e4bbf99759b51b973a3e5c45e7dd4003&encoded=0&v=paper_preview&mkt=zh-cn
|
[6] |
Kalan A K, Mundry R, Wagner O J J, et al. Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring[J]. Ecological Indicators, 2015, 54: 217-226. doi: 10.1016/j.ecolind.2015.02.023
|
[7] |
Stowell D, Plumbley M D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning[J]. PeerJ, 2014, 2(4): 1-24. http://cn.bing.com/academic/profile?id=c20d2857a0134c74d381699d4fe15859&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
程金魁.基于鸣声的鸟类物种个体识别及鸣声关系分析[D].北京: 中国科学院大学, 2012.
Cheng J K. Automatic bird species and individual recognition and the analysis of bird vocalizations[D]. Beijing: University of Chinese Academy of Sciences, 2012.
|
[9] |
Koops H V, van Baben J, Wiering F, et al. A deep neural network approach to the LifeCLEF 2014 bird task[J]. CLEF Working Notes, 2014, 1180:1-9. http://cn.bing.com/academic/profile?id=0bb5fd3074758e9e3c0d71db28b2cf5c&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Piczak K J. Recognizing bird species in audio recordings using deep convolutional neural networks[J]. CLEF Working Notes, 2016, 1609: 534-543. http://cn.bing.com/academic/profile?id=1daede1d019bd15cd65f166b76e64554&encoded=0&v=paper_preview&mkt=zh-cn
|
[11] |
TÓth B P, Czeba B. Convolutional neural networks for large-scale bird song classification in noisy environment[C]. Évora, Portugal: Conference and Labs of the Evaluation Forum, 2016: 1-9.
|
[12] |
张帅, 淮永建.基于分层卷积深度学习系统的植物叶片识别研究[J].北京林业大学学报, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
Zhang S, Huai Y J. Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016, 38(9):108-115. doi: 10.13332/j.1000-1522.20160035
|
[13] |
刘念, 阚江明.基于多特征融合和深度信念网络的植物叶片识别[J].北京林业大学学报, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267
Liu N, Kan J M. Plant leaf identification based on the multi feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3):110-119. doi: 10.13332/j.1000-1522.20150267
|
[14] |
Chen C, Liu M, Liu H, et al. Multi-temporal depth motion maps-based local binary patterns for 3-D human action recognition[J]. IEEE Access, 2017, 5:22590-22604. doi: 10.1109/ACCESS.2017.2759058
|
[15] |
周飞燕, 金林鹏, 董军, 卷积神经网络研究综述[J].计算机学报, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network journal of computer applications[J]. Chinese Journal of Computers, 2017, 40 (7): 1-23. http://d.old.wanfangdata.com.cn/Periodical/jsjxb201706001
|
[16] |
Hou R, Chen C, Shah M. Tube convolutional neural network (T-CNN) for action detection in videos[J]. IEEE International Conference on Computer Vision, 2017: 1-11. http://cn.bing.com/academic/profile?id=6a4f72d6728bcc8ce81219f3b6718b07&encoded=0&v=paper_preview&mkt=zh-cn
|
[17] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014: 1-14. http://cn.bing.com/academic/profile?id=9a83dddfc646cd21a3e38737d303a369&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
Zou J, Li W, Chen C, et al. Scene classification using local and global features with collaborative representation fusion[J]. Information Sciences, 2016, 348:209-226. doi: 10.1016/j.ins.2016.02.021
|
[19] |
Triantafyllidou D, Nousi P, Tefas A. Fast deep convolutional face detection in the wild exploiting hard sample mining[J]. Big Data Research, 2017, 3:1-24. http://cn.bing.com/academic/profile?id=3c1228dfffdc126a1ea8dc2633aedfd0&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Uricchio T, Ballan L, Seidenari L, et al. Automatic image annotation via label transfer in the semantic space[J]. Pattern Recognition, 2017, 6: 1-15. http://cn.bing.com/academic/profile?id=423cea00e0ba24bcdb4bcf40c1cf3ce9&encoded=0&v=paper_preview&mkt=zh-cn
|
[21] |
Bultan A. A four-parameter atomic decomposition of Chirplets[J]. IEEE Transactions on Signal Processing, 2002, 47(3):731-745. http://cn.bing.com/academic/profile?id=a00d5e651922ddf7fe4864eb641d7751&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
Glotin H, Ricard J, Balestriero R. Fast Chirplet transform to enhance CNN machine listening-validation on animal calls and speech[J]. arXiv, 2017: 1-22. http://cn.bing.com/academic/profile?id=0dcb90d45913b47851b3f80464eb30e6&encoded=0&v=paper_preview&mkt=zh-cn
|
[23] |
Potamitis I, Ntalampiras S, Jahn O, et al. Automatic bird sound detection in long real-field recordings: applications and tools[J]. Applied Acoustics, 2014, 80(4): 1-9. http://cn.bing.com/academic/profile?id=ec7738dfaa30c2c81477679e08f86bf9&encoded=0&v=paper_preview&mkt=zh-cn
|
[1] | Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Sun Zhilin, Liu Bing, Li Xiaowei, Tian Yuzhen, Zhang Qing, Cao Qingqin. Functional research of transcription factor CmHAT1 regulating the development of somatic embryo in Castanea mollissima[J]. Journal of Beijing Forestry University, 2024, 46(5): 73-81. DOI: 10.12171/j.1000-1522.20230215 |
[4] | Li Yapeng, Sun Yuhan, Lin Huazhong, Fang Luming, Yu Xiaolong, Weng Jianyu, Zhang Yungen, Li Yun. Correlations between microsporogenesis and male cone development of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(1): 51-58. DOI: 10.12171/j.1000-1522.20210251 |
[5] | Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040 |
[6] | ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411 |
[7] | LI Zhe-xin, NIU Shi-hui, GAO Qiong, LI Wei.. Cytological study of gibberellin regulated xylem development.[J]. Journal of Beijing Forestry University, 2014, 36(2): 68-73. |
[8] | MA Yu-lei, TANG Xing-lin, LI Xiao-yuan, PAN Hui-tang, ZHANG Qi-xiang.. Effects of photoperiod and temperature on growth and development of Primula maximowiczii.[J]. Journal of Beijing Forestry University, 2013, 35(5): 97-103. |
[9] | LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24. |
[10] | BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96. |
1. |
翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
![]() | |
2. |
罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
![]() | |
3. |
童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
![]() | |
4. |
肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
![]() | |
5. |
张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
![]() | |
6. |
何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 .
![]() | |
7. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() |