• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Bing, Cheng Ziyi, Zhang Lei, Zhao Zhijing, Lu Hai, Liu Di. Tobacco overexpression Populus tomentosa mitochondria ascorbate peroxidase improving stress resistance[J]. Journal of Beijing Forestry University, 2020, 42(7): 33-39. DOI: 10.12171/j.1000-1522.20190390
Citation: Wang Bing, Cheng Ziyi, Zhang Lei, Zhao Zhijing, Lu Hai, Liu Di. Tobacco overexpression Populus tomentosa mitochondria ascorbate peroxidase improving stress resistance[J]. Journal of Beijing Forestry University, 2020, 42(7): 33-39. DOI: 10.12171/j.1000-1522.20190390

Tobacco overexpression Populus tomentosa mitochondria ascorbate peroxidase improving stress resistance

More Information
  • Received Date: October 30, 2019
  • Revised Date: April 01, 2020
  • Available Online: July 12, 2020
  • Published Date: August 13, 2020
  •   Objective  In order to study the role of Populus tomentosa mitochondrial APX (PtomtAPX), the stress resistance of overexpression PtomtAPX transgenic tobacco was studied in this paper.
      Method  Overexpression PtomtAPX transgenic tobacco and wild type tobacco were treated with drought stress, salt stress and oxidative stress. Relative water content, chlorophyll content, malondialdehyde content, APX activity, AsA consumption, NADP/NADPH ratio, SOD activity were measured.
      Result  In this study, compared wild type plants with overexpression PtomtAPX, under oxidative stress, salt stress and drought stress, the APX activity, relative water content, chlorophyll content, AsA consumption, and NADP/NADPH ratio increase of the tobacco overexpression PtomtAPX gene were significantly higher than those of wild type, of which the APX activity of PtomtAPX transgenic tobacco was 1.77 times of wild type, the average relative water content was 1.15 times of wild type, the chlorophyll content was 1.6 times of wild type, AsA consumption was 1.11 times of wild type, and the ratio of NADP to NADPH was 1.18 times of the wild type. It suggested that the tobacco overexpressed PtomtAPX harbored stronger ROS scavenging ability.
      Conclusion  These indicate that mitochondrial APX acts a crucial role of abiotic stress tolerance in plants by eliminating H2O2 and preventing cell damage under abiotic stress.
  • [1]
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trend in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
    [2]
    Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57: 779−795. doi: 10.1007/s000180050041
    [3]
    Mullineaux P, Karpinski S. Signal transduction in response to excess light: getting out of the chloroplast[J]. Current Opinion Plant Biology, 2002, 5: 43−48. doi: 10.1016/S1369-5266(01)00226-6
    [4]
    Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling[J]. Current Opinion Plant Biology, 2002, 5: 388−395. doi: 10.1016/S1369-5266(02)00282-0
    [5]
    Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
    [6]
    Considine M J, Foyer C H. Redox regulation of plant development[J]. Antioxidants Redox Signal, 2014, 21: 1305−1326. doi: 10.1089/ars.2013.5665
    [7]
    Lustgarten M S, Bhattacharya A, Muller F L, et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels[J]. Biochemical and Biophysical Research Communications, 2012, 422: 515−521. doi: 10.1016/j.bbrc.2012.05.055
    [8]
    Sofo A, Scopa A, Nuzzaci M, et al. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. International Journal of Molecular Sciences, 2015, 16: 13561−13578. doi: 10.3390/ijms160613561
    [9]
    Bonifacio A, Martins M O, Ribeiro C W, et al. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress[J]. Plant, Cell and Environment, 2011, 34(10): 1705−1722. doi: 10.1111/j.1365-3040.2011.02366.x
    [10]
    Deepesh B, Saurabh C, Sourabh J, et al. Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana[J]. Molecular Biology Reports, 2013, 40(2): 1155−1165. doi: 10.1007/s11033-012-2157-z
    [11]
    Chew O, Whelan J, Millar A H. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants[J]. Journal of Biological Chemistry, 2003, 278: 46869−46877. doi: 10.1074/jbc.M307525200
    [12]
    Teixeira F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome[J]. Journal of Molecular Evolution, 2003, 59: 761−770.
    [13]
    Teixieria F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome[J]. Journal of Molecular Evolution, 2004, 59: 761−770.
    [14]
    Najami N, Janda T, Barriah W, et al. Ascorbate peroxidase gene family in tomato: its identification and characterization[J]. Molecular Genetics and Genomics, 2008, 279: 171−182. doi: 10.1007/s00438-007-0305-2
    [15]
    Henzler T, Steudle E. Transport and metabolic degradation of hydrogen peroxide in chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels[J]. Journal of Experimental Botany, 2000, 51: 2053−2066. doi: 10.1093/jexbot/51.353.2053
    [16]
    Anjum N A, Sharma P, Gill S S, et al. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants[J]. Environmental Science and Pollution Research, 2016, 23: 19002−19029. doi: 10.1007/s11356-016-7309-6
    [17]
    Secenji M, Hideg E, Bebes A, et al. Transcriptional differences in gene families of the ascorbate-gluta-thione cycle in wheat during mild water deficit[J]. Plant Cell Reports, 2010, 29(1): 37−50. doi: 10.1007/s00299-009-0796-x
    [18]
    Rosa S B, Caverzan A, Teixeira F K, et al. Cytosolic APX knockdown indicates an ambiguous redox responses in rice[J]. Phytochemistry, 2010, 71(5): 548−558.
    [19]
    Teixeira F K, Menezes-Benavente L, Galvão V C, et al. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments[J]. Planta, 2006, 224(2): 300−314. doi: 10.1007/s00425-005-0214-8
    [20]
    Koussevitzky S, Suzuki N, Huntington S, et al. Ascorbate peroxidase1 plays a key role in the response of Arabidopsis thaliana to stress combination[J]. Journal of Biological Chemistry, 2008, 283(49): 34197−34203. doi: 10.1074/jbc.M806337200
    [21]
    Hong C Y, Hsu Y T, Tsai Y C, et al. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl[J]. Journal of Experimental Botany, 2007, 58(12): 3273−3283. doi: 10.1093/jxb/erm174
    [22]
    Badawi G H, Kawano N, Yamauchi Y, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J]. Physiology Plant, 2004, 121(2): 231−238. doi: 10.1111/j.0031-9317.2004.00308.x
    [23]
    Sun W H, Duan M, Shu D F, et al. Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses[J]. Plant Cell Reports, 2010, 29(8): 917−926. doi: 10.1007/s00299-010-0878-9
    [24]
    张蕾. 转毛白杨线粒体和细胞质APX基因烟草提高抗逆能力的研究[D]. 北京: 北京林业大学, 2014.

    Zhang L. Populus tomentosa mitochondria or cytosolic ascorbate peroxidase gene transgenic tobacco plants enhance tolerance to abiotic stress [D]. Beijing: Beijing forestry university, 2014.
    [25]
    Cattivelli L, Rizza F, Badeck F W, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics[J]. Field Crops Research, 2008, 105(1): 1−14.
    [26]
    Calabrese V, Butterfield D A, Stella A M G. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease[J]. The Italian Journal of Biochemistry, 2004, 52(4): 177−181.
    [27]
    Goyal M, Kaur N. Low temperature induced oxidative stress tolerance in oats (Avena sativa L.) genotypes[J]. Journal of Plant Physiology, 2018, 23(2): 1−9.
    [28]
    Yoshimura K, Ishikawa T, Nakamura Y, et al. Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach[J]. The Italian Journal of Biochemistry, 1998, 353(1): 55−63.
    [29]
    Nishihara E, Kondo K, Parvez M M, et al. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea)[J]. Journal of Plant Physiology, 2003, 160(9): 1084−1091.
    [30]
    Pokora W, Tukaj Z. The combined effect of anthracene and cadmium on photosynthetic activity of three desmodesmus (Chlorophyta) species[J]. Ecotoxicology & Environmental Safety, 2010, 73(6): 1207−1213.
    [31]
    Murshed R, Lopez-Lauri F , Sallanon H. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage[J]. Physiology and Molecular Biology of Plants, 2014, 20(1): 15−29. doi: 10.1007/s12298-013-0209-z
    [32]
    Smirnoff N, Wheeler G L. Ascorbic acid in plants: biosynthesis and function[J]. Crc Critical Reviews in Biochemistry, 2000, 19(4): 267−290.
  • Related Articles

    [1]Ji Ziyu, Liu Yanhong, Qin Qianqian. Photosynthetic response and physiological and biochemical adaptability characteristics of Fraxinus velutinus to urban nighttime lighting[J]. Journal of Beijing Forestry University, 2025, 47(2): 58-65. DOI: 10.12171/j.1000-1522.20230028
    [2]Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
    [3]Han Rong, Tian Qing, Sun Yimei, Li Juanxia, Zhu Zhu. Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(7): 110-119. DOI: 10.12171/j.1000-1522.20220168
    [4]Yan Hong, Sun Yingjie, Liu Binhui. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees[J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9. DOI: 10.12171/j.1000-1522.20210198
    [5]Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218
    [6]Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352
    [7]Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
    [8]LI Ying, YAO Jing, YANG Song, HOU Ji-hua.. Leaf functional traits of main tree species at different environmental gradients in Dongling Mountain, Beijing.[J]. Journal of Beijing Forestry University, 2014, 36(1): 72-77.
    [9]ZHANG Li-sha, DAI Jian-feng, GAO Qiong, LIU Hao, ZHANG Hua, ZHAO Wei, MAO Jian-feng, LI Yue. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat.[J]. Journal of Beijing Forestry University, 2012, 34(5): 15-24.
    [10]WANG Yan-ping, LIU Sheng-li, CHEN Yu-zhen, LU Cun-fu. Leaf structural characteristics of three wild Rhododendron plants and their adaptability to Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(4): 18-25.
  • Cited by

    Periodical cited type(4)

    1. 杨桦,李祥乾,王帆,方睿,杨伟. 长足大竹象信息素结合蛋白CbuqPBP2互作蛋白的筛选与验证. 西北农林科技大学学报(自然科学版). 2024(01): 87-97 .
    2. 万超,张月,胡莉,伍炳华,袁媛. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化. 福建农业学报. 2022(02): 164-169 .
    3. 武建颖,张燕,孙贺贺,赵玉兰,董金皋,申珅,郝志敏. 玉米大斑病菌蛋白激酶A催化亚基StPKA-C1/C2的表达与互作蛋白筛选. 农业生物技术学报. 2022(10): 1976-1986 .
    4. 胡莉,万超,张蕖,陈清西,伍炳华,袁媛. 茉莉花JsMYB305转录因子互作蛋白的筛选及验证. 福建农业学报. 2022(09): 1135-1144 .

    Other cited types(9)

Catalog

    Article views (1494) PDF downloads (60) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return