Citation: | Wang Bing, Cheng Ziyi, Zhang Lei, Zhao Zhijing, Lu Hai, Liu Di. Tobacco overexpression Populus tomentosa mitochondria ascorbate peroxidase improving stress resistance[J]. Journal of Beijing Forestry University, 2020, 42(7): 33-39. DOI: 10.12171/j.1000-1522.20190390 |
[1] |
Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trend in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
|
[2] |
Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences, 2000, 57: 779−795. doi: 10.1007/s000180050041
|
[3] |
Mullineaux P, Karpinski S. Signal transduction in response to excess light: getting out of the chloroplast[J]. Current Opinion Plant Biology, 2002, 5: 43−48. doi: 10.1016/S1369-5266(01)00226-6
|
[4] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling[J]. Current Opinion Plant Biology, 2002, 5: 388−395. doi: 10.1016/S1369-5266(02)00282-0
|
[5] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
|
[6] |
Considine M J, Foyer C H. Redox regulation of plant development[J]. Antioxidants Redox Signal, 2014, 21: 1305−1326. doi: 10.1089/ars.2013.5665
|
[7] |
Lustgarten M S, Bhattacharya A, Muller F L, et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels[J]. Biochemical and Biophysical Research Communications, 2012, 422: 515−521. doi: 10.1016/j.bbrc.2012.05.055
|
[8] |
Sofo A, Scopa A, Nuzzaci M, et al. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses[J]. International Journal of Molecular Sciences, 2015, 16: 13561−13578. doi: 10.3390/ijms160613561
|
[9] |
Bonifacio A, Martins M O, Ribeiro C W, et al. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress[J]. Plant, Cell and Environment, 2011, 34(10): 1705−1722. doi: 10.1111/j.1365-3040.2011.02366.x
|
[10] |
Deepesh B, Saurabh C, Sourabh J, et al. Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana[J]. Molecular Biology Reports, 2013, 40(2): 1155−1165. doi: 10.1007/s11033-012-2157-z
|
[11] |
Chew O, Whelan J, Millar A H. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants[J]. Journal of Biological Chemistry, 2003, 278: 46869−46877. doi: 10.1074/jbc.M307525200
|
[12] |
Teixeira F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome[J]. Journal of Molecular Evolution, 2003, 59: 761−770.
|
[13] |
Teixieria F K, Menezes-Benavente L, Margis R, et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome[J]. Journal of Molecular Evolution, 2004, 59: 761−770.
|
[14] |
Najami N, Janda T, Barriah W, et al. Ascorbate peroxidase gene family in tomato: its identification and characterization[J]. Molecular Genetics and Genomics, 2008, 279: 171−182. doi: 10.1007/s00438-007-0305-2
|
[15] |
Henzler T, Steudle E. Transport and metabolic degradation of hydrogen peroxide in chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels[J]. Journal of Experimental Botany, 2000, 51: 2053−2066. doi: 10.1093/jexbot/51.353.2053
|
[16] |
Anjum N A, Sharma P, Gill S S, et al. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants[J]. Environmental Science and Pollution Research, 2016, 23: 19002−19029. doi: 10.1007/s11356-016-7309-6
|
[17] |
Secenji M, Hideg E, Bebes A, et al. Transcriptional differences in gene families of the ascorbate-gluta-thione cycle in wheat during mild water deficit[J]. Plant Cell Reports, 2010, 29(1): 37−50. doi: 10.1007/s00299-009-0796-x
|
[18] |
Rosa S B, Caverzan A, Teixeira F K, et al. Cytosolic APX knockdown indicates an ambiguous redox responses in rice[J]. Phytochemistry, 2010, 71(5): 548−558.
|
[19] |
Teixeira F K, Menezes-Benavente L, Galvão V C, et al. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments[J]. Planta, 2006, 224(2): 300−314. doi: 10.1007/s00425-005-0214-8
|
[20] |
Koussevitzky S, Suzuki N, Huntington S, et al. Ascorbate peroxidase1 plays a key role in the response of Arabidopsis thaliana to stress combination[J]. Journal of Biological Chemistry, 2008, 283(49): 34197−34203. doi: 10.1074/jbc.M806337200
|
[21] |
Hong C Y, Hsu Y T, Tsai Y C, et al. Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl[J]. Journal of Experimental Botany, 2007, 58(12): 3273−3283. doi: 10.1093/jxb/erm174
|
[22] |
Badawi G H, Kawano N, Yamauchi Y, et al. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit[J]. Physiology Plant, 2004, 121(2): 231−238. doi: 10.1111/j.0031-9317.2004.00308.x
|
[23] |
Sun W H, Duan M, Shu D F, et al. Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses[J]. Plant Cell Reports, 2010, 29(8): 917−926. doi: 10.1007/s00299-010-0878-9
|
[24] |
张蕾. 转毛白杨线粒体和细胞质APX基因烟草提高抗逆能力的研究[D]. 北京: 北京林业大学, 2014.
Zhang L. Populus tomentosa mitochondria or cytosolic ascorbate peroxidase gene transgenic tobacco plants enhance tolerance to abiotic stress [D]. Beijing: Beijing forestry university, 2014.
|
[25] |
Cattivelli L, Rizza F, Badeck F W, et al. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics[J]. Field Crops Research, 2008, 105(1): 1−14.
|
[26] |
Calabrese V, Butterfield D A, Stella A M G. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease[J]. The Italian Journal of Biochemistry, 2004, 52(4): 177−181.
|
[27] |
Goyal M, Kaur N. Low temperature induced oxidative stress tolerance in oats (Avena sativa L.) genotypes[J]. Journal of Plant Physiology, 2018, 23(2): 1−9.
|
[28] |
Yoshimura K, Ishikawa T, Nakamura Y, et al. Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach[J]. The Italian Journal of Biochemistry, 1998, 353(1): 55−63.
|
[29] |
Nishihara E, Kondo K, Parvez M M, et al. Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea)[J]. Journal of Plant Physiology, 2003, 160(9): 1084−1091.
|
[30] |
Pokora W, Tukaj Z. The combined effect of anthracene and cadmium on photosynthetic activity of three desmodesmus (Chlorophyta) species[J]. Ecotoxicology & Environmental Safety, 2010, 73(6): 1207−1213.
|
[31] |
Murshed R, Lopez-Lauri F , Sallanon H. Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage[J]. Physiology and Molecular Biology of Plants, 2014, 20(1): 15−29. doi: 10.1007/s12298-013-0209-z
|
[32] |
Smirnoff N, Wheeler G L. Ascorbic acid in plants: biosynthesis and function[J]. Crc Critical Reviews in Biochemistry, 2000, 19(4): 267−290.
|