• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. DOI: 10.13332/j.1000-1522.20190184
Citation: Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. DOI: 10.13332/j.1000-1522.20190184

Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China

More Information
  • Received Date: April 22, 2019
  • Revised Date: October 27, 2019
  • Available Online: October 31, 2019
  • Published Date: October 31, 2019
  • ObjectiveBoth stand age and climate change are crucial factors influencing forest volume dynamics, and it is important to investigate their effects on forest volume on a regional scale.
    MethodBased on an ecological process model (3-PG), data from a forest resource planning and design survey and three future climate scenarios (BS, RCP4.5, and RCP8.5), this study quantified the effects of stand age and climate change on the volume growth of Pinus massoniana forests in the Three Gorges Reservoir Area (TGRA) of central China.
    ResultStand age was predicted to increase the annual average volume of the Pinus massoniana forests by 2.60 × 106 m3/year or 2.60 m3/(ha·year) in the TGRA during 2009 to 2050. While the effect of climate change was less pronounced than that of stand age, an annual volume increment of 1.70 × 105−2.00 × 105 m3/year or 0.17−0.20 m3/(ha·year) only accounted for 6.55%−7.67% of the effect of stand age. The effects of both stand age and climate change on volume growth in Pinus massoniana forests were predicted to be the strongest in the central part and the weakest in the southern part of the TGRA. The Wanzhou District was predicted to present the highest annual average increment of volume per hectare (4.54 m3/(ha·year)) owing to stand age; while Banan District, the lowest value (1.17 m3/(ha·year)). The promoting effects of climate change on volume growth were predicted to be the highest in Kaizhou District (0.40 m3/(ha·year)); the lowest in Fuling District (0.03 m3/(ha·year)).
    ConclusionBoth stand age and climate change are predicted to enhance the volume growth of the Pinus massoniana forests, and their combined effects would most increase the annual average volume increment per hectare in Wanzhou and Kaizhou Districts and least in Banan District. Studies are required to focus on the growth of Pinus massoniana forests in Banan District in the future through strengthening of forest management and adjustment of the forest age structure to maintain the development of regional forest resources.
  • [1]
    雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116−126. doi: 10.11707/j.1001-7488.20181213

    Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
    [2]
    Gschwantner T, Alberdi I, Balázs A, et al. Harmonisation of stem volume estimates in European National Forest Inventories[J]. Annals of Forest Science, 2019, 76(1): 24. doi: 10.1007/s13595-019-0800-8
    [3]
    Kotivuori E, Maltamo M, Korhonen l, et al. Calibration of nationwide airborne laser scanning based stem volume models[J]. Remote Sensing of Environment, 2018, 210: 179−192. doi: 10.1016/j.rse.2018.02.069
    [4]
    Lafortezza R, Giannico V. Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems[J]. Ecological Indicators, 2019, 96: 87−98. doi: 10.1016/j.ecolind.2017.05.014
    [5]
    赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015, 37(2):24−31.

    Zhao K J, Wang L D, Wang L J, et al. Stock volume and productivity of Larix principis-rupprechtii in northern and northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2): 24−31.
    [6]
    Chrysafis I, Mallinis G, Tsakiri M, et al. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 77: 1−14. doi: 10.1016/j.jag.2018.12.004
    [7]
    Mund M, Kummetz E, Hein M, et al. Growth and carbon stocks of a spruce forest chronosequence in central Europe[J]. Forest Ecology and Management, 2002, 171(3): 275−296. doi: 10.1016/S0378-1127(01)00788-5
    [8]
    Pretzsch H, Biber P, Schütze G, et al. Forest stand growth dynamics in Central Europe have accelerated since 1870[J]. Nature Communications, 2014, 5: 4967. doi: 10.1038/ncomms5967
    [9]
    Sampson D A, Wynne R H, Seiler J R. Edaphic and climate effects on forest stand development, net primary production, and net ecosystem productivity simulated for Coastal Plain loblolly pine in Virginia[J/OL]. Journal of Geophysical Research Biogeosciences, 2008, 113: G01003 [2019−03−15]. https://doi.org/10.1029/2006JG000270.
    [10]
    周蕾, 王绍强, 周涛, 等. 1901— 2010年中国森林碳收支动态: 林龄的重要性[J]. 科学通报, 2016, 61(18):2064−2073.

    Zhou L, Wang S Q, Zhou T, et al. Carbon dynamics of China’s forests during 1901−2010: the importance of forest age[J]. Chinese Science Bulletin, 2016, 61(18): 2064−2073.
    [11]
    王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2):29−38.

    Wang S J, Deng H F, Xiang W, et al. Establishment of predicting models for Pinus tabulaeformis stands volume based on mixed models[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38.
    [12]
    王海宾, 彭道黎, 高秀会, 等. 基于GF-1 PMS影像和k-NN方法的延庆区森林蓄积量估测[J]. 浙江农林大学学报, 2018, 35(6):87−95.

    Wang H B, Peng D L, Gao X H, et al. Forest stock volume estimates in Yanqing District based on GF-1 PMS images and k-NN method[J]. Journal of Zhejiang A&F University, 2018, 35(6): 87−95.
    [13]
    Landsberg J J, Waring R H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management, 1997, 95(3): 209−228. doi: 10.1016/S0378-1127(97)00026-1
    [14]
    López-Serrano F R, Martínez-García E, Dadi T, et al. Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model[J]. European Journal of Forest Research, 2015, 134(1): 167−185. doi: 10.1007/s10342-014-0841-3
    [15]
    Meyer G, Black T A, Jassal R S, et al. Measurements and simulations using the 3-PG model of the water balance and water use efficiency of a lodgepole pine stand following mountain pine beetle attack[J]. Forest Ecology and Management, 2017, 393: 89−104. doi: 10.1016/j.foreco.2017.03.019
    [16]
    Xie Y L, Wang H Y, Lei X D. Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China[J]. Forest Ecology and Management, 2017, 406: 208−218. doi: 10.1016/j.foreco.2017.10.018
    [17]
    Zeng L X, He W, Teng M J, et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 639: 679−686. doi: 10.1016/j.scitotenv.2018.05.208
    [18]
    Zhao M F, Xiang W H, Peng C H, et al. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model[J]. Forest Ecology and Management, 2009, 257: 1520−1531. doi: 10.1016/j.foreco.2008.12.025
    [19]
    冯源, 肖文发, 黄志霖, 等. 未来气候变化情景下三峡库区马尾松林生物量固碳动态与空间分异[J/OL]. 生态学杂志, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019.

    Feng Y, Xiao W F, Huang Z L, et al. Dynamics and spatial differentiation of biomass carbon sequestration of Pinus massoniana forests in the Three Gorges Reservoir Area under future climate change scenarios[J/OL]. Chinese Journal of Ecology, 2019, 38(12) [2019−10−25]. https://doi.org/10.13292/j.1000-4890.201912.019.
    [20]
    Wang W F, Peng C H, Zhang S Y, et al. Development of TRIPLEX-management model for simulating the response of forest growth to pre-commercial thinning[J]. Ecological Modelling, 2011, 222(14): 2249−2261. doi: 10.1016/j.ecolmodel.2010.09.019
    [21]
    Räty O, Räisänen J, Ylhäisi J S. Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations[J]. Climate Dynamics, 2014, 42(9−10): 2287−2303. doi: 10.1007/s00382-014-2130-8
    [22]
    花利忠, 江希钿, 贺秀斌. 3-PG模型在华南尾叶桉人工林的应用研究[J]. 北京林业大学学报, 2007, 29(2):100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017

    Hua L Z, Jiang X D, He X B. Application of 3-PG model in Eucalyptus urophylla plantations of southern China[J]. Journal of Beijing Forestry University, 2007, 29(2): 100−104. doi: 10.3321/j.issn:1000-1522.2007.02.017
    [23]
    李轩然, 刘琪璟, 蔡哲, 等. 千烟洲针叶林的比叶面积及叶面积指数[J]. 植物生态学报, 2007, 31(1):93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012

    Li X R, Liu Q J, Cai Z, et al. Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China[J]. Journal of Plant Ecology (Chinese Version), 2007, 31(1): 93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012
    [24]
    Gonzalez-Benecke C A, Teskey R O, Martin T A, et al. Regional validation and improved parameterization of the 3-PG model for Pinus taeda stands[J]. Forest Ecology and Management, 2016, 361: 237−256. doi: 10.1016/j.foreco.2015.11.025
    [25]
    解雅麟, 王海燕, 雷相东. 基于过程模型的气候变化对长白落叶松人工林净初级生产力的影响[J]. 植物生态学报, 2017, 41(8):826−839. doi: 10.17521/cjpe.2016.0382

    Xie Y L, Wang H Y, Lei X D. Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 826−839. doi: 10.17521/cjpe.2016.0382
    [26]
    徐雨晴, 周波涛, 於琍, 等. 气候变化背景下中国未来森林生态系统服务价值的时空特征[J]. 生态学报, 2018, 38(6):1952−1963.

    Xu Y Q, Zhou B T, Yu L, et al. Temporal-spatial dynamic pattern of forest ecosystem service value affected by climate change in the future in China[J]. Acta Ecologica Sinica, 2018, 38(6): 1952−1963.
    [27]
    Zhao M F, Xiang W H, Deng X W, et al. Application of TRIPLEX model for predicting Cunninghamia lanceolata, and Pinus massoniana, forest stand production in Hunan Province, southern China[J]. Ecological Modelling, 2013, 250: 58−71. doi: 10.1016/j.ecolmodel.2012.10.011
    [28]
    方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140.

    Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.
    [29]
    Alfaro-Sánchez R, Jump A S, Pino J, et al. Land use legacies drive higher growth, lower wood density and enhanced climatic sensitivity in recently established forests[J]. Agricultural and Forest Meteorology, 2019, 276−277: 107630. doi: 10.1016/j.agrformet.2019.107630
    [30]
    郭晓娜, 苏维词, 李强, 等. 三峡库区(重庆段)地表起伏度及其对生态系统服务价值的影响[J]. 生态与农村环境学报, 2016, 32(6):887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004

    Guo X N, Su W C, Li Q, et al. Surface relief degree and its effects on ecosystem service value in the Chongqing section of the Three Gorges Reservoir Region, China[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 887−894. doi: 10.11934/j.issn.1673-4831.2016.06.004
    [31]
    张强, 万素琴, 毛以伟, 等. 三峡库区复杂地形下的气温变化特征[J]. 气候变化研究进展, 2005, 1(4):164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005

    Zhang Q, Wan S Q, Mao Y W, et al. Characteristics of temperature changes around the Three Gorges with complex topography[J]. Advances in Climate Change Research, 2005, 1(4): 164−167. doi: 10.3969/j.issn.1673-1719.2005.04.005
    [32]
    岳天祥, 范泽孟. 典型陆地生态系统对气候变化响应的定量研究[J]. 科学通报, 2014, 59(3):217−231.

    Yue T X, Fan Z M. A review of responses of typical terrestrial ecosystems to climate change[J]. Chinese Science Bulletin, 2014, 59(3): 217−231.
    [33]
    赵志江. 川西亚高山岷江冷杉与紫果云杉对气候的响应[D]. 北京: 北京林业大学, 2013.

    Zhao Z J. The response of Abies faxoniana and Picea purpurea to climate factors in subalpine of western Sichuan Province, China[D]. Beijing: Beijing Forestry University, 2013.
    [34]
    郭灵辉, 郝成元, 吴绍洪, 等. 21世纪上半叶内蒙古草地植被净初级生产力变化趋势[J]. 应用生态学报, 2016, 27(3):803−814.

    Guo L H, Hao C Y, Wu S H, et al. Projected changes in vegetation net primary productivity of grassland in Inner Mongolia, China during 2011−2050[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 803−814.
    [35]
    Agne M C, Beedlow P A, Shaw D C, et al. Interactions of predominant insects and diseases with climate change in Douglas-fir forests of western Oregon and Washington, U. S. A.[J]. Forest Ecology and Management, 2018, 409: 317−332. doi: 10.1016/j.foreco.2017.11.004
    [36]
    Wu J S, Wang T, Pan K Y, et al. Assessment of forest damage caused by an ice storm using multi-temporal remote-sensing images: a case study from Guangdong Province[J]. International Journal of Remote Sensing, 2016, 37(13): 3125−3142. doi: 10.1080/01431161.2016.1194544
    [37]
    Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375. doi: 10.1016/j.foreco.2009.12.029
    [38]
    Augustynczik A L D, Hartig F, Minunno F, et al. Productivity of Fagus sylvatica under climate change: a Bayesian analysis of risk and uncertainty using the model 3-PG[J]. Forest Ecology and Management, 2017, 401: 192−206. doi: 10.1016/j.foreco.2017.06.061
    [39]
    Schurman J S, Babst F, Björklund J, et al. The climatic drivers of primary Picea forest growth along the Carpathian are changing under rising temperatures[J]. Global Change Biology, 2019, 25(9): 3136−3150. doi: 10.1111/gcb.14721
    [40]
    Büntgen U, Krusic P J, Piermattei A, et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming[J]. Nature Communications, 2019, 10(1): 2171. doi: 10.1038/s41467-019-10174-4
  • Related Articles

    [1]Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072
    [2]Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
    [3]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [4]Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329
    [5]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [6]Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
    [7]HE Li-hong, WANG Hai-yan, WANG Lu, WANG Yue.. Response of net primary productivity of Larix olgensis forest ecosystem to climate change.[J]. Journal of Beijing Forestry University, 2015, 37(9): 28-36. DOI: 10.13332/j.1000-1522.20140439
    [8]CHEN Feng, LIN Xiang-dong, NIU Shu-kui, WANG San1, LI De, . Influence of climate change on forest fire in Yunnan Province, southwestern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 7-15.
    [9]HUO Chang-fu, CHENG Gen-wei, LU Xu-yang, FAN Ji-hui, XIAO Fei-peng. Dynamic simulation of climate change impacts on forest primary succession in Gongga Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2010, 32(1): 1-6.
    [10]ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024
  • Cited by

    Periodical cited type(7)

    1. 李佳怡,阮红玉,邱思玉,梁瑞婷,朱兆廷,文毅,王成雨,王轶夫,孙玉军. 基于经验模型和机理模型的杉木人工林生物量估测对比研究. 生态学报. 2024(08): 3502-3514 .
    2. 王丽,李宗泰,刘焕彬,刘政,张金良,李善文. 山东省森林资源质量变化及其与年均温关系研究. 林业调查规划. 2023(01): 74-78 .
    3. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    4. 雷媛媛,王新杰. 应用机器学习模型与线性模型预测森林蓄积生长量的精度. 东北林业大学学报. 2023(09): 72-75+82 .
    5. 颜培栋,李鹏,杨章旗,黄绥理,周永斌,零天旺. 不同造林密度马尾松人工林分化特征及其对生产力的影响. 林业科学. 2023(10): 66-75 .
    6. 何文利,崔其龙,苏志成. 不同林龄兴安落叶松林对其植被层生物量分配特征的影响——以根河林业局为例. 内蒙古林业调查设计. 2023(06): 90-95+104 .
    7. 曲凌昊,赵秀海,张春雨. 3-PG模型在天然兴安落叶松林生长因子预测中的应用. 林业科学研究. 2022(01): 158-165 .

    Other cited types(5)

Catalog

    Article views (2166) PDF downloads (131) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return