• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Mei, He Zhengquan, Ma Jiang, Sang Ziyang, Zhu Zhonglong, Zhang Dechun, Ma Lüyi, Chen Faju. Genetic relationship analysis and molecular identification of Magnolia wufengensis cultivars based on SSR and SRAP markers[J]. Journal of Beijing Forestry University, 2019, 41(9): 69-80. DOI: 10.13332/j.1000-1522.20190204
Citation: Zhang Mei, He Zhengquan, Ma Jiang, Sang Ziyang, Zhu Zhonglong, Zhang Dechun, Ma Lüyi, Chen Faju. Genetic relationship analysis and molecular identification of Magnolia wufengensis cultivars based on SSR and SRAP markers[J]. Journal of Beijing Forestry University, 2019, 41(9): 69-80. DOI: 10.13332/j.1000-1522.20190204

Genetic relationship analysis and molecular identification of Magnolia wufengensis cultivars based on SSR and SRAP markers

More Information
  • Received Date: April 28, 2019
  • Revised Date: June 26, 2019
  • Available Online: July 09, 2019
  • Published Date: August 31, 2019
  • ObjectiveGenetic diversity and genetic variation of Magnolia wufengensis cultivars were examined by simple sequence repeats (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers for establishing its molecular marker system.
    MethodThirty-five simples of M.wufengensis cultivars were applied to PCR amplification for SSR and SRAP markers. The genetic similarity coefficient of each cultivar was calculated by NTSYS-pc2.1 and cluster analysis was carried out using UPGMA.The locus data of combination of primer pairs that can discriminate all cultivars were screened by R language.
    ResultA total of 18 pairs of SSR primers with polymorphism and clear bands were obtained. With the genome DNA of 35 M. wufengensis cultivars as the PCR template, a total of 128 polymorphic bands were generated. The number of polymorphic bands at each polymorphic primer ranged from 2 to 15, with mean band number of 7.1, mean pattern number of 10.6, mean effective pattern number of 5.4 and mean D of 0.72.The mean value of the percentage of polymorphic loci was 0.730 2, ranging from 0.142 9 ~ 1.000 0. The mean Shannon's index was 0.304 2, ranging from 0.086 4 to 0.433 7. The mean expected heterozygosity among cultivars was 0.248 8, ranging from 0.059 2 to 0.282 3.Eleven pairs of effective SRAP primers were acquired through screening. A total of 156 polymorphic bands were produced with the genome DNA of 35 M.wufengensis cultivars as the template. The number of polymorphic bands at each polymorphic primer ranged from 7 to 18, with mean band number of 14.2, mean pattern number of 22.7, mean effective pattern number of 13.2 and mean D of 0.93. The mean value of the percentage of polymorphic loci was 0.815 6, ranging from 0.657 1 ~ 1.000 0. The mean Shannon’s index was 0.375 9, ranging from 0.287 2 to 0.455 3. The mean expected heterozygosity among cultivars was 0.240 4, ranging from 0.180 2 to 0.311 6.
    ConclusionM. wufengensis has relatively high genetic diversity. The analysis of molecular variation of both SSR and SRAP marker systems indicates that most genetic diversity is within M. wufengensis cultivars. The locus data of combination of primer pairs can discriminate all cultivars for identifying M. wufengensis cultivars efficiently and accurately.These results provide important references for the protection and breeding of M. wufengensis.
  • [1]
    马履一, 王罗荣, 贺随超, 等. 中国木兰科木兰属一新种[J]. 植物研究, 2006, 26(1):4−7. doi: 10.3969/j.issn.1673-5102.2006.01.003

    Ma L Y, Wang L R, He S C, et al. A new species of Magnolia (Magnoliaceae) from Hubei China[J]. Bulletin of Botanical Research, 2006, 26(1): 4−7. doi: 10.3969/j.issn.1673-5102.2006.01.003
    [2]
    贺随超, 马履一, 陈发菊. 红花玉兰种质资源遗传多样性初探[J]. 西北植物学报, 2007, 27(12):2421−2428. doi: 10.3321/j.issn:1000-4025.2007.12.011

    He S C, Ma L Y, Chen F J. Genetic diversity of Magnolia wufengensis based on AFLP[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(12): 2421−2428. doi: 10.3321/j.issn:1000-4025.2007.12.011
    [3]
    Chen L Y, Chen F J, He S C, et al. High genetic diversity and small genetic variation among populations of Magnolia wufengensis (Magnoliaceae), revealed by ISSR and SRAP markers[J]. Electronic Journal of Biotechnology, 2014, 17(6): 268−274. doi: 10.1016/j.ejbt.2014.08.003
    [4]
    Wang L, Xiao A H, Ma L Y, et al. Identification of Magnolia wufengensis (Magnoliaceae) cultivars using phenotypic traits, SSR and SRAP markers: insights into breeding and conservation[J/OL]. Genetics and Molecular Research, 2017, 16 (1): gmr16019473 [2019−04−05]. http://dx.doi.org/10.4238/gmr16019473.
    [5]
    杨杨. 红花玉兰幼苗在北京地区生态适应性与越冬技术研究[D]. 北京: 北京林业大学, 2015.

    Yang Y. Studies on the ecological adaptability and overwintering technique of Magnolia wufengensis seedlings in Beijing[D]. Beijing: Beijing Forestry University, 2015.
    [6]
    Yang Y, Jia Z, Chen F, et al. Comparative analysis of natural cold acclimation and deacclimation of two Magnolia species with different winter hardiness[J]. Acta Physiologiae Plantarum, 2015, 37(7): 1−11.
    [7]
    张嘉, 刘爱青, 张淑玲, 等. 利用荧光标记SSR绘制中国芍药品种分子身份证[J]. 北京林业大学学报, 2016, 38(6):101−109.

    Zhang J, Liu A Q, Zhang S L, et al. Using the SSR with fluorescent labeling to establish SSR molecular ID code for cultivars of the Chinese herbaceous[J]. Journal of Beijing Forestry University, 2016, 38(6): 101−109.
    [8]
    Jing Z B, Wang X P, Cheng J M. Analysis of genetic diversity among Chinese wild Vitis species revealed with SSR and SRAP markers[J/OL]. Genetics and Molecular Research, 2013, 12(2): 1962−1973 [2019−04−05]. http://dx.doi.org/10.4238/2013.June.13.5.
    [9]
    吴钰滢, 周璇, 徐庭亮, 等. 现代月季品种‘赞歌’和粉团蔷薇杂交后代鉴定与评价[J]. 北京林业大学学报, 2019, 41(3):124−133.

    Wu Y Y, Zhou X, Xu T L, et al. Identification and evaluation of F1 hybrids between Rosa ‘Sanka’ × R. multiflora var. cathayensis[J]. Journal of Beijing Forestry University, 2019, 41(3): 124−133.
    [10]
    Xu M, Li Z, Wang J, et al. RNA sequencing and SSR marker development for genetic diversity research in Woonyoungia septentrionalis, (Magnoliaceae)[J]. Conservation Genetics Resources, 2017, 10(4): 1−6.
    [11]
    György Z, Vouillamoz J F, Höhn M. Microsatellite markers reveal common east Alpine-Carpathian genepool for the arctic-alpine Rhodiola rosea (Crassulaceae)[J]. Plant Systematics and Evolution, 2016, 302(6): 721−730.
    [12]
    周鹏, 林玮, 朱芹, 等. 基于SRAP分子标记的刨花润楠遗传多样性分析[J]. 北京林业大学学报, 2016, 38(9):16−24.

    Zhou P, Lin W, Zhu Q, et al. Genetic diversity of Machilus pauhoi assessed by SRAP markers[J]. Journal of Beijing Forestry University, 2016, 38(9): 16−24.
    [13]
    Francis C Y, Rong C Y, Boyle T. Popgene microsoft windowsbased freeware for population genetic analysis[J]. University of Alberta, 1999: 1−31.
    [14]
    Rohlf F J. NTSYSpc numerical taxonomy and multivariate analysis system version 2.0 user guide[Z]. New York: Applied Biostatistics Incorporated, 1998.
    [15]
    邱帅, 沈柏春, 李婷婷, 等. 基于随机森林算法和SRAP分子标记的桂花品种鉴定方法[J]. 林业科学, 2018, 54(1):32−45. doi: 10.11707/j.1001-7488.20180104

    Qiu S, Shen B C, Li T T, et al. A method of Osmanthus fragrans cultivars identification based on random forest algorithm and SRAP molecular markers[J]. Scientia Silvae Sinicae, 2018, 54(1): 32−45. doi: 10.11707/j.1001-7488.20180104
    [16]
    Zhao X F, Sun W B, Yang J B, et al. Isolation and characterization of 12 microsatellite loci for Michelia coriacea (Magnoliaceae), a critically endangered endemic to Southeast Yunnan, China[J]. Conservation Genetics, 2009, 10(5): 1583−1585. doi: 10.1007/s10592-008-9799-3
    [17]
    Sun Y, Liu Y F, Wang J, et al. Ten polymorphic microsatellite markers in Michelia maudiae (Magnoliaceae)[J/OL]. American Journal of Botany, 2010, 97(12): e157−e158 [2019−04−12]. https://doi.org/10.3732/ajb.1000332.
    [18]
    林燕芳. 利用微卫星分子标记检测单性木兰的种群遗传结构与基因流[D]. 桂林: 广西师范大学, 2012.

    Lin Y F. The population genetic structure and gene flow of Kmeria septentrionalis assessed by microsatellite markers[D]. Guilin: Guangxi Normal University, 2012.
    [19]
    熊敏, 王静, 张志荣, 等. 濒危植物华木莲核基因组微卫星引物开发研究[J]. 植物分类与资源学报, 2011, 33(5):535−539.

    Xiong M, Wang J, Zhang Z R, et al. The development of nuclear microsatellite markers for an endangered plant, Sinoman glietiaglauca (Magnoliaceae)[J]. Plant Diversity, 2011, 33(5): 535−539.
    [20]
    IsagiY, Kanazahi T, Suzuki W, et al. Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species[J]. Molecular Ecology, 1999, 8(4): 698−700. doi: 10.1046/j.1365-294x.1999.00878.x
    [21]
    Solmaz I, Kaçar Y A, Sarı N, et al. Genetic diversity within Turkish watermelon (Citrullus lanatus Thunb.) Matsumura & Nakai) accessions revealed by SSR and SRAP markers[J]. Turkish Journal of Agriculture and Forestry, 2016, 40(3): 407−419.
    [22]
    Yuan X, Mingyue T U, Yali H E, et al. Analysis of genetic diversity in 73 Kentucky bluegrass materials by SSR and SRAP markers[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46(2): 327−335. doi: 10.15835/nbha46210916
    [23]
    Archak S, Gaikwad A B, Gautam D, et al. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India[J]. Genome, 2003, 46(3): 362−369. doi: 10.1139/g03-016
    [24]
    毛秀红, 郑勇奇, 孙百友, 等. 基于SSR的刺槐无性系遗传多样性分析和指纹图谱构建[J]. 林业科学, 2017, 53(10):83−92.

    Mao X H, Zheng Y Q, Sun B Y, et al. Genetic diversity and fingerprints of Robinia pseudoacacia clones based on SSR markers[J]. Scientia Silvae Sinicae, 2017, 53(10): 83−92.
    [25]
    邹自征. 苎麻分子标记方法比较和遗传图谱的初步构建[D]. 北京: 中国农业科学院, 2012.

    Zou Z Z. Comparison among different methods of molecular markers and preliminary construction of molecular genetic map in ramie (Boehmeria nivea (L.) Gaud.)[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2012.
    [26]
    Chen J Q, Ci X Q, Li Q M, et al. Genetic diversity of Litseas zemaois, an endangered species endemic to China, detected by inter-simple sequence repeat (ISSR)[J]. Biodivers Science, 2006, 14(5): 410−420. doi: 10.1360/biodiv.060104
    [27]
    Yu H H, Yan Z L, Liu R N, et al. Genetic diversity and relationship of endangered plant Magnolia officinalis(Magnoliacee) assessed with ISSR polymorphisms[J]. Biochemical Systematics and Ecology, 2011, 39(2): 71−78. doi: 10.1016/j.bse.2010.12.003
    [28]
    杨梅, 张敏, 师守国, 等. 武当木兰种群遗传结构的ISSR分析[J]. 林业科学, 2014, 50(1):76−81.

    Yang M, Zhang M, Shi S G, et al. Analysis of genetic structure of Magnolia sprengeri populations based on ISSR markers[J]. Scientia Silvae Sinicae, 2014, 50(1): 76−81.
    [29]
    Nybom H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants[J]. Molecular Ecology, 2010, 13(5): 1143−1155.
    [30]
    Tang S Q, Bin X Y, Zhou J Y, et al. Assessment of genetic diversity in cultivars and wild accessions of Luohanguo (Siraitia grosvenorii), a species with edible and medicinal sweet fruits endemic to southern China, using RAPD and AFLP markers[J]. Genetic Resources and Crop Evolution, 2007, 54(5): 1053−1061.
    [31]
    He J, Chen L, Huang B, et al. Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba[J]. Genetica, 2009, 135(2): 233−243. doi: 10.1007/s10709-008-9272-8
    [32]
    Zhang X M, Wen J, Motley T J, et al. Genetic variation and conservation assessment of Chinese populations of Magnolia cathcartii (Magnoliaceae), a rare evergreen tree from the South-Central China hotspot in the eastern Himalayas[J]. Journal of Plant Research, 2010, 123(3): 321−331. doi: 10.1007/s10265-009-0278-9
    [33]
    Zhang Y X, Zhang X R, Hua W, et al. Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers[J]. Genes and Genomics, 2010, 32(3): 207−215. doi: 10.1007/s13258-009-0888-6
  • Related Articles

    [1]Zhang Yiying, Zou Xuge, Wang Yin, Wang Jianming, Li Jingwen. Effects of Tamarix ramosissima on the distribution of Populus euphratica in various soil water and salinity environments in the Ejina Oasis, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 11-20. DOI: 10.12171/j.1000-1522.20210317
    [2]Lei Shanqing, Wang Wenjuan, Xu Yixin, Wang Yuchen, Chen Lijun, Du Zhiqiang, Li Jingwen. Tamarix ramosissima changes the responses of root morphology of Populus euphratica seedlings to various soil water and salinity conditions[J]. Journal of Beijing Forestry University, 2020, 42(7): 89-97. DOI: 10.12171/j.1000-1522.20190441
    [3]Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
    [4]NIU Jian-zhi, YU Xin-xiao, ZHANG Zhi-qiang.. Movement characteristics analysis of soil water flow in the dark coniferous forest ecosystem of Gongga Mountain, Sichuan Province of southwestern China.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 240-245.
    [5]YANG Xin-bing, , YU Xin-xiao, LU Shao-wei, LI Yong-ci. Tree root water uptake model based on soil hydrodynamicsⅡ: Stand.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 201-205.
    [6]YANG Xin-bing, YU Xin-xiao, LU Shao-wei, LI Yong-ci. Tree root water uptake model based on soil hydrodynamics I: Single tree[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 197-200.
    [7]YANG Qi-hong, CHEN Li-hua, ZHANG Fu, ZHANG Chao-bo. Responses of soil moisture variations to rainfall and vegetation.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 88-94.
    [8]ZHANG Zhan-yu, SU Li-tan, ZHANG Guo-hua. Computer simulation of water movement and heat transfer in groundwater-soil-vegetation-atmosphere continuum at oasis-desert ecotone[J]. Journal of Beijing Forestry University, 2006, 28(6): 88-92.
    [9]ZHANG Qiu-ying, LI Fa-dong, OU Guo-qiang, SONG Xian-fang, ZHANG Wan-jun. Response of soil moisture variation to precipitation and mulching measures[J]. Journal of Beijing Forestry University, 2005, 27(5): 37-41.
    [10]ZHAO Ting-ning, CAO Zi-long, ZHENG Cui-ling, SUN Bao-ping, DING Guo-dong. Impacts of high-parallel sand-barrier on vegetation and soil seed bank in the seriously desertified grassland[J]. Journal of Beijing Forestry University, 2005, 27(2): 34-37.
  • Cited by

    Periodical cited type(6)

    1. 刘巍,张妍,彭儒胜,尹杰,杨冰. 35份北方地区杨树种质资源的遗传多样性及种质指纹图谱的构建. 东北林业大学学报. 2024(10): 19-26 .
    2. 赵娟,朱凯凯,鲍佳书,徐惠强,李新芝,黄金勇,谭鹏鹏,彭方仁. 薄壳山核桃种质资源的SSR标记分析及数字指纹构建. 植物资源与环境学报. 2023(02): 10-17 .
    3. 蔡天润,郭佳,王紫怡,宋亚欣,张淑敏,杨敏生,张军. 基于SSR分子标记的山地刺槐克隆生长空间格局分析. 林业科学. 2023(06): 19-27 .
    4. 刘巍,蔄胜军,苏晓华,彭儒胜,吴建军. 黑杨派杨树种质资源的SSR分析及鉴定. 西南林业大学学报(自然科学). 2022(01): 13-22 .
    5. 王妍,李立华,徐宗艺,王艳敏,李静,白卉. 东北地区主栽杨树品种的SSR分析及鉴定. 东北林业大学学报. 2021(04): 24-32+38 .
    6. 李慧,徐瑞瑞,刘东超,李圣波,刘忠华. 皱皮木瓜品种的遗传多样性和SSR指纹图谱分析. 分子植物育种. 2021(22): 7519-7529 .

    Other cited types(5)

Catalog

    Article views (3432) PDF downloads (104) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return