• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. DOI: 10.12171/j.1000-1522.20190419
Citation: Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. DOI: 10.12171/j.1000-1522.20190419

Fine root anatomical and morphological traits of three temperate liana species in northeastern China

More Information
  • Received Date: November 05, 2019
  • Revised Date: March 28, 2020
  • Available Online: May 14, 2020
  • Published Date: June 30, 2020
  • Objective  The objective was to investigate the functional traits and potential absorbing capacity in fine roots of liana (woody climbing plants) in temperate forests.
    Method  We sampled three typical temperate liana species in northeastern China, including two twining climbers (Actinidia kolomikta and Schisandra chinensis) and one tendril climber (Vitis amurensis). The anatomical, morphological, and branching traits, as well as the composition of absorptive roots were examined for the grade 1−5 fine roots in the three species.
    Result  The results showed that the cortical thickness of Actinidia kolomikta and Schisandra chinensis increased by ascending branch order, while that of Vitis amurensis decreased. The stele diameter of all three liana species significantly increased with increasing branch order, but the ratio of cortical thickness to stele diameter significantly reduced. In term of the status of cortex appearance, the proportion of roots with absorbing function apparently decreased with ascending branch order across all three species, with the grade 1 fine roots as typical absorptive roots. From grade 1 to 5, specific root length significantly decreased, but root diameter and tissue density increased. The decline in root branching ratio associated with increasing branch order was only found in V. amurensis. Those root functional traits in liana were significantly influenced by tree species, but showing significant interaction with branch orders. Compared with two twining climbers, tendril climber of V. amurensis had wider stele, lower ratio of cortical thickness to stele diameter, and much higher branching ratio to the grade 2 and grade 3 roots. In comparison to other woody plants and herbaceous ferns at the same study site, mean root diameter of three liana species was thicker but mean specific root length was lower, with intermediate mean tissue root density.
    Conclusion  Although the interspecific differences in root anatomical and morphological traits exist in three temperate liana species, the variation patterns of those root traits associated with increasing branch order are consistent with other woody plants. The morphological traits of the grade 1 roots in these lianas display distinctive characteristics compared with other plant taxa in this region.
  • [1]
    刘奇, 吴怀栋, 谭运洪, 等. 西双版纳热带季雨林木质藤本多样性及其攀援方式[J]. 林业科学, 2017, 53(8):1−8. doi: 10.11707/j.1001-7488.20170801

    Liu Q, Wu H D, Tan Y H, et al. Liana diversity and its climbing situation on trees in Xishuangbanna tropical seasonal rainforest[J]. Scientia Silvae Sinicae, 2017, 53(8): 1−8. doi: 10.11707/j.1001-7488.20170801
    [2]
    Leicht-Young S A, Pavlovic N B, Frohnapple K J, et al. Liana habitat and host preferences in northern temperate forests[J]. Forest Ecology and Management, 2010, 260(9): 1467−1477. doi: 10.1016/j.foreco.2010.07.045
    [3]
    Pérez-Salicrup D R, Schnitzer S, Putz F E. Community ecology and management of lianas[J]. Forest Ecology and Management, 2004, 190(1): 1−2. doi: 10.1016/j.foreco.2003.10.001
    [4]
    Schnitzer S A, Bongers F. The ecology of lianas and their role in forests[J]. Trends in Ecology & Evolution, 2002, 17(5): 223−230.
    [5]
    胡亮. 东亚温带藤本植物多样性及其格局[J]. 生物多样性, 2011, 19(5):567−573. doi: 10.3724/SP.J.1003.2011.07064

    Hu L. Distribution and diversity of climbing plants in temperate East Asia[J]. Biodiversity Science, 2011, 19(5): 567−573. doi: 10.3724/SP.J.1003.2011.07064
    [6]
    Allen B P, Sharitz R R, Goebel P C. Are lianas increasing in importance in temperate floodplain forests in the southeastern United States?[J]. Forest Ecology and Management, 2007, 242(1): 17−23. doi: 10.1016/j.foreco.2007.01.027
    [7]
    Ladwig L M, Meiner S J. Liana host preference and implications for deciduous forest regeneration[J]. Journal of the Torrey Botanical Society, 2010, 137(1): 103−112. doi: 10.3159/09-RA-041.1
    [8]
    Allen B P, Sharitz R R, Goebel P C. Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest[J]. Forest Ecology and Management, 2005, 218(1−3): 259−269. doi: 10.1016/j.foreco.2005.08.021
    [9]
    Vivek P, Parthasarathy N. Contrasting leaf-trait strategies in dominant liana and tree species of Indian tropical dry evergreen forest[J]. Flora, 2018, 249: 143−149. doi: 10.1016/j.flora.2018.11.002
    [10]
    丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4):362−370.

    Ding L Z, Chen Y J, Zhang J L. Leaf traits and their associations among liana species in tropical rainforest[J]. Plant Science Journal, 2014, 32(4): 362−370.
    [11]
    Freschet G T, Valverde-Barrantes O J, Tucker C M, et al. Climate, soil and plant functional types as drivers of global fine-root trait variation[J]. Journal of Ecology, 2017, 105(5): 1182−1196. doi: 10.1111/1365-2745.12769
    [12]
    Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555: 94−97. doi: 10.1038/nature25783
    [13]
    Collins C G, Wright S J, Wurzburger N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees[J]. Oecologia, 2016, 180(4): 1037−1047. doi: 10.1007/s00442-015-3410-7
    [14]
    Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
    [15]
    纪春艳, 崔大练, 马玉心. 东北地区野生藤本植物区系分析[J]. 中国林副特产, 2007(1):59−63. doi: 10.3969/j.issn.1001-6902.2007.01.029

    Ji C Y, Cui D L, Ma Y X. Biotic zonation of the wild climber plants in northeast China[J]. Forest By-product and Speciality in China, 2007(1): 59−63. doi: 10.3969/j.issn.1001-6902.2007.01.029
    [16]
    王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6):871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001

    Wang X R, Wang Z Q, Han Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations[J]. Acta Phytoecologica Sinica, 2005, 29(6): 871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001
    [17]
    卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6):1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004

    Wei X, Liu Y, Chen H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004
    [18]
    Gu J C, Xu Y, Dong X Y, et al. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species[J]. Tree Physiology, 2014, 34(4): 415−425. doi: 10.1093/treephys/tpu019
    [19]
    Bardgett R D, Mommer L, De Vries F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12): 692−699.
    [20]
    刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339. doi: 10.1360/N052014-00244

    Liu X J, Ma K P. Plant functional traits concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244
    [21]
    Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
    [22]
    Dong X Y, Wang H F, Gu J C, et al. Root morphology, histology and chemistry of nine fern species (Pteridophyta) in a temperate forest[J]. Plant and Soil, 2015, 393(1−2): 215−227. doi: 10.1007/s11104-015-2484-7
    [23]
    Long Y Q, Kong D L, Chen Z X, et al. Variation of the linkage of root function with root branch order[J/OL]. PLoS One, 2013, 8(2): e57153 (2013−02−25) [2017−04−18]. https//doi.org/10.1371/journal.pone.0057153.
    [24]
    Kong D L, Wang J J, Zeng H, et al. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots[J]. New Phytologist, 2017, 213(4): 1569−1572. doi: 10.1111/nph.14344
    [25]
    师伟, 王政权, 郭大立, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217−1226. doi: 10.3773/j.issn.1005-264x.2008.06.002

    Shi W, Wang Z Q, Guo D L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1217−1226. doi: 10.3773/j.issn.1005-264x.2008.06.002
    [26]
    Wang Z Q, Guo D L, Wang X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant and Soil, 2006, 288(1−2): 155−171. doi: 10.1007/s11104-006-9101-8
    [27]
    常文静, 郭大立. 中国温带、亚热带和热带森林45个常见树种细根直径变异[J]. 植物生态学报, 2008, 32(6):1248−1257. doi: 10.3773/j.issn.1005-264x.2008.06.005

    Chang W J, Guo D L. Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1248−1257. doi: 10.3773/j.issn.1005-264x.2008.06.005
    [28]
    Kou L, Guo D L, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1−2): 207−218. doi: 10.1007/s11104-015-2420-x
    [29]
    廖乐平. 亚热带木兰科、樟科10个树种细根形态与功能特性研究及其亲缘关系分析[D]. 长沙: 中南林业科技大学, 2016.

    Liao L P. Fine root morphology and functional characteristics of 10 species of Magnoliaceae and Camphoraceae in subtropics and their relationship analysis[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [30]
    许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J]. 植物生态学报, 2011, 35(9):955−964.

    Xu Y, Gu J C, Dong X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China[J]. Acta Phytoecologica Sinica, 2011, 35(9): 955−964.
    [31]
    Woods C L, Dewalt S J, Cardelús C L, et al. Fertilization influences the nutrient acquisition strategy of a nomadic vine in a lowland tropical forest understory[J]. Plant and Soil, 2018, 431(1−2): 389−399. doi: 10.1007/s11104-018-3772-9
  • Related Articles

    [1]Li Xiaoyu, Hu Bing, Qin Jianghuan, Zhao Xiuhai. Relationship between species abundance distribution and trait distribution in main forest stand of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 47-56. DOI: 10.12171/j.1000-1522.20230050
    [2]Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with $ {\rm{NO}}_{{3}}^ {{-}} $ uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
    [3]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [4]Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots of Populus euramericana cv. ‘74/76’ saplings to ozone dose[J]. Journal of Beijing Forestry University, 2023, 45(2): 49-57. DOI: 10.12171/j.1000-1522.20210347
    [5]Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385
    [6]Li Wei, Wang Pan, Qiqige, Zhang Qichang, Huang Bingjun, Xiao Zejun. Phenotypic diversity analysis of blueberry germplasm resources[J]. Journal of Beijing Forestry University, 2020, 42(2): 124-134. DOI: 10.12171/j.1000-1522.20190279
    [7]Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352
    [8]WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437
    [9]JI Meng-cheng, SHAN Xiao-bin, ZHANG Yin-li. Investigation on Clematis resources in Zhejiang Province[J]. Journal of Beijing Forestry University, 2008, 30(5): 66-72.
    [10]ZHENG Xiao-xian. Theory research of forest resource transformation[J]. Journal of Beijing Forestry University, 2007, 29(6): 185-189. DOI: 10.13332/j.1000-1522.2007.06.024
  • Cited by

    Periodical cited type(1)

    1. 王修清,王倩,王亚萍,冯欣,孙建华,孟庆恒. 杀线虫真菌Sr18发酵液对松材线虫超微结构的影响. 北京林业大学学报. 2017(07): 69-75 . 本站查看

    Other cited types(6)

Catalog

    Article views (2327) PDF downloads (102) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return