Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots of Populus euramericana cv. ‘74/76’ saplings to ozone dose[J]. Journal of Beijing Forestry University, 2023, 45(2): 49-57. DOI: 10.12171/j.1000-1522.20210347
Citation: Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots of Populus euramericana cv. ‘74/76’ saplings to ozone dose[J]. Journal of Beijing Forestry University, 2023, 45(2): 49-57. DOI: 10.12171/j.1000-1522.20210347

Response of functional traits of leaves and fine roots of Populus euramericana cv. ‘74/76’ saplings to ozone dose

More Information
  • Received Date: September 04, 2021
  • Revised Date: November 07, 2021
  • Accepted Date: January 03, 2023
  • Available Online: January 06, 2023
  • Published Date: February 24, 2023
  •   Objective  Poplar leaves and fine roots play a key role in the carbon and nutrient cycle (such as nitrogen and phosphorus) in the forest ecosystem. However, the response of fine roots to ozone (O3) stress has been poorly studied, and the difference in responses of leaves and fine roots to O3 is still unclear. This study thus aimed to clarify the difference in responses to O3 dose of leaves and fine roots, two rapidly decomposing organs, and to provide reference for understanding the response mechanism of poplar to O3 pollution from the perspective of aboveground and belowground feedback.
      Method  Five O3 concentration levels were set with the open-top chambers to explore whether the functional traits of poplar leaves and fine roots respond differently to O3 dose.
      Result  There was significant hormesis on the response of tannin content of leaves and P content of fine roots to O3 stress, which showed a positive effect before toxicological O3 threshold and a negative effect after toxicological O3 threshold. Leaf saturated photosynthetic rate, fine root biomass and soluble sugar content of leaves and fine roots showed a toxicological O3 threshold, but not significant hormesis. Water use efficiency and the biomass of leaves, stems, coarse roots and total roots decreased linearly with O3 dose increasing. The ratio of fine roots to leaves in the content of C, N, soluble sugar, lignin, and lignin∶N did not change with O3 dose increasing. The ratio of fine roots to leaves in the content of P, starch, and TNC increased with the O3 dose increasing, while tannin content first declined and then rose with O3 dose increasing (O3 threshold value of 37.25 μmol/mol·h).
      Conclusion  These results indicate that the significant differences in the responses of leaves and fine roots to O3 pollution will result in marked changes in the relative belowground roles of these two litter sources within poplar plantations. O3 stress could induce more P and non-structural carbohydrates to fine roots for storage relative to leaves, which might be a coping strategy for poplar exposed to O3 stress.
  • [1]
    Li K, Jacob D J, Liao H, et al. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2): 422−427. doi: 10.1073/pnas.1812168116
    [2]
    Agathokleous E, Feng Z Z, Oksanen E, et al. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity[J]. Science Advances, 2020, 6(33): eabc1176. doi: 10.1126/sciadv.abc1176
    [3]
    Xia M, Talhelm A F, Pregitzer K S. Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition[J]. Soil Biology & Biochemistry, 2017, 112: 24−34.
    [4]
    Xia M, Talhelm A F, Pregitzer K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3): 715−726. doi: 10.1111/nph.13494
    [5]
    Freschet G T, Cornwell W K, Wardle D A, et al. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide[J]. Journal of Ecology, 2013, 101(4): 943−952. doi: 10.1111/1365-2745.12092
    [6]
    Li P, Calatayud V, Gao F, et al. Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels[J]. Tree Physiology, 2016, 36(9): 1105−1116. doi: 10.1093/treephys/tpw042
    [7]
    Li P, Feng Z Z, Calatayud V, et al. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types[J]. Plant Cell and Environment, 2017, 40(10): 2369−2380. doi: 10.1111/pce.13043
    [8]
    Li P, Yin R B, Shang B, et al. Interactive effects of ozone exposure and nitrogen addition on tree root traits and biomass allocation pattern: an experimental case study and a literature meta-analysis[J]. Science of the Total Environment, 2020, 710: 136379. doi: 10.1016/j.scitotenv.2019.136379
    [9]
    Li P, Zhou H M, Xu Y S, et al. The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability[J]. Science of the Total Environment, 2019, 665: 929−936. doi: 10.1016/j.scitotenv.2019.02.182
    [10]
    辛月, 高峰, 冯兆忠. 不同基因型杨树的光合特征与臭氧剂量的响应关系[J]. 环境科学, 2016, 37(6): 2359−2367. doi: 10.13227/j.hjkx.2016.06.046

    Xin Y, Gao F, Feng Z Z. Photosynthetic characteristics and ozone dose-response relationships for different genotypes of poplar[J]. Environmental Science, 2016, 37(6): 2359−2367. doi: 10.13227/j.hjkx.2016.06.046
    [11]
    李品, 冯兆忠, 尚博, 等. 6种绿化树种的气孔特性与臭氧剂量的响应关系[J]. 生态学报, 2018, 38(8): 2710−2721.

    Li P, Feng Z Z, Shang B, et al. Stomatal characteristics and ozone dose-response relationships for six greening tree species[J]. Acta Ecologica Sinica, 2018, 38(8): 2710−2721.
    [12]
    Shang B, Feng Z Z, Li P, et al. Ozone exposure and flux-based response relationships with photosynthesis, leaf morphology and biomass in two poplar clones[J]. Science of the Total Environment, 2017, 603−604: 185−195. doi: 10.1016/j.scitotenv.2017.06.083
    [13]
    Gentile J H. The implications of hormesis to ecotoxicology and ecological risk assessment (ERA)[J]. Human & Experimental Toxicology, 2001, 20: 513−515.
    [14]
    冯兆忠, 彭金龙. 中国粮食作物产量/木本植物生物量与地表臭氧污染的响应关系[J]. 环境科学, 2021, 42(6): 3084−3090.

    Feng Z Z, Peng J L. Relationship between relative crop yield/woody plant biomass and ground-level ozone pollution in China[J]. Environmental Science, 2021, 42(6): 3084−3090.
    [15]
    Agathokleous E, Belz R G, Calatayud V, et al. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose-response models[J]. Science of the Total Environment, 2019, 649: 61−74. doi: 10.1016/j.scitotenv.2018.08.264
    [16]
    Agathokleous E, Araminiene V, Belz R G, et al. A quantitative assessment of hormetic responses of plants to ozone[J]. Environmental Research, 2019, 176: 108527. doi: 10.1016/j.envres.2019.108527
    [17]
    Agathokleous E, Kitao M, Calabrese E J. Hormesis: a compelling platform for sophisticated plant science[J]. Trends in Plant Science, 2019, 24(4): 318−327. doi: 10.1016/j.tplants.2019.01.004
    [18]
    Calabrese E J, Agathokleous E. Hormesis: transforming disciplines that rely on the dose response[J]. IUBMB Life, 2022, 74(1): 8−23. doi: 10.1002/iub.2529
    [19]
    Feng Z Z, Shang B, Gao F, et al. Current ambient and elevated ozone effects on poplar: a global meta-analysis and response relationships[J]. Science of the Total Environment, 2019, 654: 832−840. doi: 10.1016/j.scitotenv.2018.11.179
    [20]
    李品, 周慧敏, 冯兆忠. 臭氧污染、氮沉降和干旱胁迫交互作用对杨树叶和细根非结构性碳水化合物的影响[J]. 环境科学, 2020, 42(2): 1004−1012. doi: 10.13227/j.hjkx.202007213

    Li P, Zhou H M, Feng Z Z. Ozone pollution, nitrogen addition, and drought stress interact to affect non-structural carbohydrates in leaves and fine roots of poplar[J]. Environmental Science, 2020, 42(2): 1004−1012. doi: 10.13227/j.hjkx.202007213
    [21]
    Schenk S T, Schikora A. Lignin extraction and quantification, a tool to monitor defense reaction at the plant cell wall level[J]. Bio-Protocol, 2015, 5(6): 10.21769/BioProtoc.1430.
    [22]
    Lindroth R L, Osier T L, Barnhill H R H, et al. Effects of genotype and nutrient availability on phytochemistry of trembling aspen (Populus tremuloides Michx.) during leaf senescence[J]. Biochemical Systematics and Ecology, 2002, 30(4): 297−307. doi: 10.1016/S0305-1978(01)00088-6
    [23]
    Andersen C. Source-sink balance and carbon allocation below ground in plants exposed to ozone[J]. New Phytologist, 2003, 157: 213−228. doi: 10.1046/j.1469-8137.2003.00674.x
    [24]
    陈展, 于浩, 尚鹤, 等. 臭氧胁迫对树木根系影响研究进展[J]. 林业科学研究, 2016, 29(3): 455−463. doi: 10.3969/j.issn.1001-1498.2016.03.023

    Chen Z, Yu H, Shang H, et al. Effects of ozone stress on tree root: a review[J]. Forest Research, 2016, 29(3): 455−463. doi: 10.3969/j.issn.1001-1498.2016.03.023
    [25]
    Karlsson P E, Uddling J, Skärby L, et al. Impact of ozone on the growth of birch (Betula pendula) saplings[J]. Environmental Pollution, 2003, 124(3): 485−495. doi: 10.1016/S0269-7491(03)00010-1
    [26]
    Manninen A M, Laatikainen T, Holopainen T. Condition of Scots pine fine roots and mycorrhiza after fungicide application and low-level ozone exposure in a 2-year field experiment[J]. Trees, 1998, 12: 347−355. doi: 10.1007/s004680050161
    [27]
    顾晓军, 田素芬. 毒物兴奋效应概念及其生物学意义[J]. 毒理学杂志, 2007, 21(5): 425−428. doi: 10.3969/j.issn.1002-3127.2007.05.028

    Gu X J, Tian S F. Concept of hormesis and biological significances[J]. Journal of Toxicology, 2007, 21(5): 425−428. doi: 10.3969/j.issn.1002-3127.2007.05.028
    [28]
    Maurer S, Matyssek R. Nutrition and the ozone sensitivity of birch (Betula pendula)[J]. Trees, 1997, 12: 11−20.
    [29]
    郑有飞, 刘瑞娜, 吴荣军, 等. 地表臭氧胁迫对大豆干物质生产和分配的影响[J]. 中国农业气象, 2011, 32(1): 73−80. doi: 10.3969/j.issn.1000-6362.2011.01.014

    Zheng Y F, Liu R N, Wu R J, et al. Impacts of surface ozone exposure on dry matter production and distribution of soybean[J]. Chinese Journal of Agrometeorology, 2011, 32(1): 73−80. doi: 10.3969/j.issn.1000-6362.2011.01.014
    [30]
    马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2): 159−166. doi: 10.17521/cjpe.2015.0015

    Ma Y Z, Zhong Q L, Jin B J, et al. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 159−166. doi: 10.17521/cjpe.2015.0015
    [31]
    Shafer S R. Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of sorghum[J]. Environmental Pollution, 1988, 51(2): 131−152. doi: 10.1016/0269-7491(88)90202-3
    [32]
    Hartmann H, Adams H D, Hammond W M, et al. Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests[J]. Environmental and Experimental Botany, 2018, 152: 7−18. doi: 10.1016/j.envexpbot.2018.03.011
    [33]
    路光超, 黄玉源, 陈红跃, 等. 地表臭氧增加对黄花夹竹桃和芒果叶片膜脂过氧化程度和保护酶活性的影响[J]. 生态环境, 2012, 21(7): 1235−1240.

    Lu G C, Huang Y Y, Chen H Y, et al. Effects of ozone on membrane lipid peroxidation and protective enzyme activities of Thevetia peruviana and Mangifera leaves[J]. Ecology and Environmental Sciences, 2012, 21(7): 1235−1240.
    [34]
    苏丽丽, 付伟, 徐胜, 等. 高浓度O3对银杏凋落叶化学组成的影响[J]. 生态学杂志, 2015, 34(10): 2757−2763.

    Su L L, Fu W, Xu S, et al. Effects of elevated O3 concentration on chemical composition of leaf litter of Ginkgo biloba[J]. Chinese Journal of Ecology, 2015, 34(10): 2757−2763.
    [35]
    Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees: from what we can measure to what we want to know[J]. New Phytologist, 2016, 211(2): 386−403. doi: 10.1111/nph.13955
    [36]
    Pellegrini E, Hoshika Y, Dusart N, et al. Antioxidative responses of three oak species under ozone and water stress conditions[J]. Science of the Total Environment, 2019, 647: 390−399. doi: 10.1016/j.scitotenv.2018.07.413
    [37]
    Peltonen P A, Vapaavuori E, Julkunen-Titto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone[J]. Global Change Biology, 2005, 11(8): 1305−1324. doi: 10.1111/j.1365-2486.2005.00979.x
    [38]
    Sallas L, Kainulainen P, Utriainen J, et al. The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings[J]. Global Change Biology, 2001, 7(3): 303−311. doi: 10.1046/j.1365-2486.2001.00408.x
    [39]
    Lindroth R L, Kopper B J, Parsons W F. Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera)[J]. Environmental Pollution, 2001, 115(3): 395−404. doi: 10.1016/S0269-7491(01)00229-9
    [40]
    Parsons W F J, Lindroth R L, Bockheim J G. Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3[J]. Global Change Biology, 2004, 10: 1666−1677. doi: 10.1111/j.1365-2486.2004.00851.x
    [41]
    Yuan X Y, Feng Z Z, Liu S, et al. Concentration- and flux-based dose-responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient[J]. Plant Cell & Environment, 2017, 40(9): 1960−1971.
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
    [3]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [4]Yue Yang, Wei Liuduan, Xu Chengyang, Zhang Haiyan. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University, 2022, 44(6): 34-43. DOI: 10.12171/j.1000-1522.20210262
    [5]Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. DOI: 10.12171/j.1000-1522.20190419
    [6]Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
    [7]Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352
    [8]Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132
    [9]LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157
    [10]HAN Wei, LIU Chao, FAN Yan-wen, ZHAO Na, YE Si-yang, YIN Wei-lun, WANG Xiang-ping. Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain,northeastern China. Journal of Beijing Forestry University[J]. Journal of Beijing Forestry University, 2014, 36(4): 47-53. DOI: 10.13332/j.cnki.jbfu.2014.04.012
  • Cited by

    Periodical cited type(1)

    1. 吴贤杰,李品,闫香如,侯霄帆. 臭氧污染对杨树地上和地下生物量降低的直接和间接效应. 生态学报. 2024(15): 6684-6695 .

    Other cited types(2)

Catalog

    Article views (513) PDF downloads (80) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return