Citation: | Zhao Jie, Wang Bing, Luo Mei, Mo Lijie, Li Hui, Liu Di, Lu Hai. Identification of aspartic acid protease PtoAED3-interacting proteins through GST pull-down assays in Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(5): 64-74. DOI: 10.12171/j.1000-1522.20200365 |
[1] |
葛伟娜, 李超, 张家琦. 植物天冬氨酸蛋白酶的研究进展[J]. 生物技术通报, 2016, 282(1):14−20.
Ge W N, Li C, Zhang J Q. Research advances on plant aspartic proteinase[J]. Biotechnology Bulletin, 2016, 282(1): 14−20.
|
[2] |
王亚锐, 吴燕. 植物天冬氨酸蛋白酶的功能研究进展[J]. 生命科学, 2016, 204(3):106−112.
Wang Y R, Wu Y. The research progress on the functions of plant aspartic proteases[J]. Chinese Bulletin of Life Sciences, 2016, 204(3): 106−112.
|
[3] |
Suguna K, Padlan E A, Smith C W, et al. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(20): 7009−7013. doi: 10.1073/pnas.84.20.7009
|
[4] |
Zhao G H, Zhou A H, Lu G, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis[J/OL]. Parasites & Vectors, 2013, 6: 175 (2013−06−14)[2019−05−26]. https://doi.org/10.1186/1756-3305-6-175.
|
[5] |
Takahashi K, Niwa H, Yokota N, et al. Widespread tissue expression of nepenthesin-likeaspartic protease genes in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2008, 46(7): 724−729. doi: 10.1016/j.plaphy.2008.04.007
|
[6] |
Chen J, Ouyang Y, Wang L, et al. Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation[J]. Gene, 2009, 442(1−2): 108−118. doi: 10.1016/j.gene.2009.04.021
|
[7] |
Guo R, Xu X, Carole B, et al. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape[J/OL]. BMC Genomics, 2013, 14: 554 (2013−08−15)[2019−06−27]. https://doi.org/10.1186/1471-2164-14-554.
|
[8] |
高杉, 蓝兴国. 植物天冬氨酸蛋白酶的结构与功能[J]. 生物技术通讯, 2018, 29(6):150−154.
Gao S, Lan X G. Structure and function of aspartic proteinases in plants[J]. Letters in Biotechnology, 2018, 29(6): 150−154.
|
[9] |
Faro C, Gal S. Aspartic proteinase content of the Arabidopsis genome[J]. Current Protein Peptide Science, 2005, 6(6): 493−500. doi: 10.2174/138920305774933268
|
[10] |
Simoes I, Faro C. Structure and function of plant aspartic proteinases[J]. European Journal of Biochemistry, 2004, 271(11): 2067−2075. doi: 10.1111/j.1432-1033.2004.04136.x
|
[11] |
Runeberg-Roos P, Saarma M. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells[J]. Plant Journal, 1998, 15(1): 139−145. doi: 10.1046/j.1365-313X.1998.00187.x
|
[12] |
Tamura T, Terauchi K, Kiyosaki T, et al. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds[J]. Plant Physiology, 2007, 164(4): 470−477. doi: 10.1016/j.jplph.2006.02.009
|
[13] |
Kato Y, Yamamoto Y, Murakami S, et al. Post-translational regulation of CND41 protease activity in senescent tobacco leaves[J]. Planta, 2005, 222(4): 643−651. doi: 10.1007/s00425-005-0011-4
|
[14] |
Diaz C, Lemaitre T, Christ A, et al. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition[J]. Plant Physiology, 2008, 147(3): 1437−1449. doi: 10.1104/pp.108.119040
|
[15] |
Ge X, Dietrich C, Matsuno M, et al. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis[J]. Embo Reports, 2005, 6(3): 282−288. doi: 10.1038/sj.embor.7400357
|
[16] |
Bright J, Desikan R, Hancock J T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J]. Plant Journal, 2006, 45(1): 113−122. doi: 10.1111/j.1365-313X.2005.02615.x
|
[17] |
Xia Y, Suzuki H, Borevitz J, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling[J]. Embo Journal, 2004, 23(4): 980−988. doi: 10.1038/sj.emboj.7600086
|
[18] |
Cao S, Guo M, Wang C, et al. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation[J]. BMC Plant Biology, 2019, 19: 1−17.
|
[19] |
Bhalerao R, Keskitalo J, Sterky F, et al. Gene expression in autumn leaves[J]. Plant Physiology, 2003, 131(2): 430−442. doi: 10.1104/pp.012732
|
[20] |
Rauch J N, Gestwicki J E. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro[J]. Journal of Biological Chemistry, 2014, 289(3): 1402−1414. doi: 10.1074/jbc.M113.521997
|
[21] |
Starokadomskyy P, Gluck N, Li H, et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling[J]. Journal of Clinical Investigation, 2013, 123(5): 2244−2256. doi: 10.1172/JCI66466
|
[22] |
Murtas G, Reeves P H, Fu Y F, et al. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates[J]. Plant Cell, 2003, 15(10): 2308−2319. doi: 10.1105/tpc.015487
|
[23] |
Shindo T, Misas-Villamil J C, Hörger A C, et al. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14[J/OL]. PLoS ONE, 2012, 7(1): e29317 (2012−01−06) [2020−10−10]. https://doi.org/10.1371/journal.pone.0029317.
|
[24] |
Lampl N, Alkan N, Davydov O, et al. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis[J]. Plant Journal, 2013, 74(3): 498−510. doi: 10.1111/tpj.12141
|
[25] |
Hayashi Y, Yamada K, Shimada T, et al. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis[J]. Plant Cell Physiology, 2001, 42(9): 894−899. doi: 10.1093/pcp/pce144
|
[26] |
Dóczi R, Brader G, Pettkó-Szandtner A, et al. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling[J]. Plant Cell, 2007, 19(10): 3266−3279. doi: 10.1105/tpc.106.050039
|
[27] |
Murray S L, Ingle R A, Petersen L N, et al. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein[J]. Molecular Plant Microbe Interact, 2007, 20(11): 1431−1438. doi: 10.1094/MPMI-20-11-1431
|
[28] |
Lin S S, Martin R, Mongrand S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. Plant Journal, 2008, 56(4): 550−561. doi: 10.1111/j.1365-313X.2008.03625.x
|
[29] |
Wang L C, Tsai M C, Chang K Y, et al. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress[J]. Journal of Experimental Botnay, 2011, 62(10): 3609−3620. doi: 10.1093/jxb/err060
|
[30] |
Lee C F, Pu H Y, Wang L C, et al. Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1
|
[31] |
Hillmann F, Bagramyan K, Straßburger M, et al. The crystal structure of peroxiredoxin Asp f3 provides mechanistic insight into oxidative stress resistance and virulence of Aspergillus fumigatus[J/OL]. Scientific Reports, 2016, 6(1): 33396 (2016−09−14) [2019−08−03]. https://doi.org/10.1186/1471-2164-14-554.
|
[32] |
Meskauskiene R, Würsch M, Laloi C, et al. A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses 1O2-induced cell death[J]. Plant Journal, 2009, 60(3): 399−410. doi: 10.1111/j.1365-313X.2009.03965.x
|
[33] |
Sarnowski T J, Ríos G, Jásik J, et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell, 2005, 17(9): 2454−2472. doi: 10.1105/tpc.105.031203
|
[34] |
Lu X, Li Y, Su Y, et al. An Arabidopsis gene encoding a C2H2-domain protein with alternatively spliced transcripts is essential for endosperm development[J]. Journal of Experimental Botany, 2012, 63(16): 5935−5944. doi: 10.1093/jxb/ers243
|
[35] |
Shen W H, Parmentier Y, Hellmann H, et al. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis[J]. Molecular Biology of the Cell, 2002, 13(6): 1916−1928. doi: 10.1091/mbc.e02-02-0077
|
[36] |
Hobbie L, McGovern M, Hurwitz L R, et al. The axr6
|
[37] |
Song J B, Huang S Q, Dalmay T, et al. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS[J]. Plant & Cell Physiology, 2012, 53(7): 1283−1294.
|
[38] |
Kadirjan-Kalbach D K, Yoder D W, Ruckle M E, et al. FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division[J]. Plant Journal, 2012, 72(5): 856−867. doi: 10.1111/tpj.12001
|
[39] |
Fornara F, Parenicová L, Falasca G, et al. Functional characterization of OsMADS18
|
[40] |
Yoo S Y, Kim Y, Kim S Y, et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J/OL]. PLoS ONE, 2007, 2(7): e642(2007−07−25)[2020−10−12]. https://doi.org/10.1371/journal.pone.0000642.
|
[41] |
Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1789−1801. doi: 10.1104/pp.106.093971
|
[42] |
Shin D H, Cho M H, Kim T L, et al. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development[J]. Journal of Biological Chemistry, 2010, 285(42): 32151−32159. doi: 10.1074/jbc.M110.133710
|