• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Jie, Wang Bing, Luo Mei, Mo Lijie, Li Hui, Liu Di, Lu Hai. Identification of aspartic acid protease PtoAED3-interacting proteins through GST pull-down assays in Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(5): 64-74. DOI: 10.12171/j.1000-1522.20200365
Citation: Zhao Jie, Wang Bing, Luo Mei, Mo Lijie, Li Hui, Liu Di, Lu Hai. Identification of aspartic acid protease PtoAED3-interacting proteins through GST pull-down assays in Populus tomentosa[J]. Journal of Beijing Forestry University, 2021, 43(5): 64-74. DOI: 10.12171/j.1000-1522.20200365

Identification of aspartic acid protease PtoAED3-interacting proteins through GST pull-down assays in Populus tomentosa

More Information
  • Received Date: November 20, 2020
  • Revised Date: February 06, 2021
  • Available Online: April 16, 2021
  • Published Date: May 26, 2021
  •   Objective   Aspartic acid protease belongs to proteolytic enzyme family. In order to further analyze the molecular regulation mechanism of PtoAED3 in plant growth and development, GST-pull down combined mass spectrometry technology was used to identify and analyze the interacting protein of protein PtoAED3 in Populus tomentosa.
      Method   The CDS sequence of PtoAED3 was cloned by homologous sequence from P. trichocarpa, and a prokaryotic expression vector pGEX-4T-PtoAED3 containing GST tag was constructed. The GST-PtoAED3 fusion protein was induced by IPTG and purified by GST beads. The purified protein PtoAED3 was co-incubated with the total protein extracted from P. tomentosa, then the candidate interacting proteins of PtoAED3 proteins were obtained by GST-pull down technique and analyzed by mass spectrometry technology.
      Result   Through the identification of amino acid sequences of these proteins with mass spectrometry, a total of 128 candidate proteins interacting with PtoAED3 were screened, which involve multiple biological processes such as cell process, metabolic process, stress response, biological regulation and development process.
      Conclusion   The GST-pull down combined mass spectrometry technology was used to screen out candidate proteins that interact with PtoAED3 in P. tomentosa, providing a preliminary direction for studying the interaction of PtoAED3 with substrates or complexes and the molecular regulatory mechanism affecting the growth and development of poplar.
  • [1]
    葛伟娜, 李超, 张家琦. 植物天冬氨酸蛋白酶的研究进展[J]. 生物技术通报, 2016, 282(1):14−20.

    Ge W N, Li C, Zhang J Q. Research advances on plant aspartic proteinase[J]. Biotechnology Bulletin, 2016, 282(1): 14−20.
    [2]
    王亚锐, 吴燕. 植物天冬氨酸蛋白酶的功能研究进展[J]. 生命科学, 2016, 204(3):106−112.

    Wang Y R, Wu Y. The research progress on the functions of plant aspartic proteases[J]. Chinese Bulletin of Life Sciences, 2016, 204(3): 106−112.
    [3]
    Suguna K, Padlan E A, Smith C W, et al. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopus chinensis: implications for a mechanism of action[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(20): 7009−7013. doi: 10.1073/pnas.84.20.7009
    [4]
    Zhao G H, Zhou A H, Lu G, et al. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis[J/OL]. Parasites & Vectors, 2013, 6: 175 (2013−06−14)[2019−05−26]. https://doi.org/10.1186/1756-3305-6-175.
    [5]
    Takahashi K, Niwa H, Yokota N, et al. Widespread tissue expression of nepenthesin-likeaspartic protease genes in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2008, 46(7): 724−729. doi: 10.1016/j.plaphy.2008.04.007
    [6]
    Chen J, Ouyang Y, Wang L, et al. Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation[J]. Gene, 2009, 442(1−2): 108−118. doi: 10.1016/j.gene.2009.04.021
    [7]
    Guo R, Xu X, Carole B, et al. Genome-wide identification, evolutionary and expression analysis of the aspartic protease gene superfamily in grape[J/OL]. BMC Genomics, 2013, 14: 554 (2013−08−15)[2019−06−27]. https://doi.org/10.1186/1471-2164-14-554.
    [8]
    高杉, 蓝兴国. 植物天冬氨酸蛋白酶的结构与功能[J]. 生物技术通讯, 2018, 29(6):150−154.

    Gao S, Lan X G. Structure and function of aspartic proteinases in plants[J]. Letters in Biotechnology, 2018, 29(6): 150−154.
    [9]
    Faro C, Gal S. Aspartic proteinase content of the Arabidopsis genome[J]. Current Protein Peptide Science, 2005, 6(6): 493−500. doi: 10.2174/138920305774933268
    [10]
    Simoes I, Faro C. Structure and function of plant aspartic proteinases[J]. European Journal of Biochemistry, 2004, 271(11): 2067−2075. doi: 10.1111/j.1432-1033.2004.04136.x
    [11]
    Runeberg-Roos P, Saarma M. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells[J]. Plant Journal, 1998, 15(1): 139−145. doi: 10.1046/j.1365-313X.1998.00187.x
    [12]
    Tamura T, Terauchi K, Kiyosaki T, et al. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds[J]. Plant Physiology, 2007, 164(4): 470−477. doi: 10.1016/j.jplph.2006.02.009
    [13]
    Kato Y, Yamamoto Y, Murakami S, et al. Post-translational regulation of CND41 protease activity in senescent tobacco leaves[J]. Planta, 2005, 222(4): 643−651. doi: 10.1007/s00425-005-0011-4
    [14]
    Diaz C, Lemaitre T, Christ A, et al. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition[J]. Plant Physiology, 2008, 147(3): 1437−1449. doi: 10.1104/pp.108.119040
    [15]
    Ge X, Dietrich C, Matsuno M, et al. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis[J]. Embo Reports, 2005, 6(3): 282−288. doi: 10.1038/sj.embor.7400357
    [16]
    Bright J, Desikan R, Hancock J T, et al. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J]. Plant Journal, 2006, 45(1): 113−122. doi: 10.1111/j.1365-313X.2005.02615.x
    [17]
    Xia Y, Suzuki H, Borevitz J, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling[J]. Embo Journal, 2004, 23(4): 980−988. doi: 10.1038/sj.emboj.7600086
    [18]
    Cao S, Guo M, Wang C, et al. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation[J]. BMC Plant Biology, 2019, 19: 1−17.
    [19]
    Bhalerao R, Keskitalo J, Sterky F, et al. Gene expression in autumn leaves[J]. Plant Physiology, 2003, 131(2): 430−442. doi: 10.1104/pp.012732
    [20]
    Rauch J N, Gestwicki J E. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro[J]. Journal of Biological Chemistry, 2014, 289(3): 1402−1414. doi: 10.1074/jbc.M113.521997
    [21]
    Starokadomskyy P, Gluck N, Li H, et al. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling[J]. Journal of Clinical Investigation, 2013, 123(5): 2244−2256. doi: 10.1172/JCI66466
    [22]
    Murtas G, Reeves P H, Fu Y F, et al. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates[J]. Plant Cell, 2003, 15(10): 2308−2319. doi: 10.1105/tpc.015487
    [23]
    Shindo T, Misas-Villamil J C, Hörger A C, et al. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14[J/OL]. PLoS ONE, 2012, 7(1): e29317 (2012−01−06) [2020−10−10]. https://doi.org/10.1371/journal.pone.0029317.
    [24]
    Lampl N, Alkan N, Davydov O, et al. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis[J]. Plant Journal, 2013, 74(3): 498−510. doi: 10.1111/tpj.12141
    [25]
    Hayashi Y, Yamada K, Shimada T, et al. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis[J]. Plant Cell Physiology, 2001, 42(9): 894−899. doi: 10.1093/pcp/pce144
    [26]
    Dóczi R, Brader G, Pettkó-Szandtner A, et al. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling[J]. Plant Cell, 2007, 19(10): 3266−3279. doi: 10.1105/tpc.106.050039
    [27]
    Murray S L, Ingle R A, Petersen L N, et al. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein[J]. Molecular Plant Microbe Interact, 2007, 20(11): 1431−1438. doi: 10.1094/MPMI-20-11-1431
    [28]
    Lin S S, Martin R, Mongrand S, et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis[J]. Plant Journal, 2008, 56(4): 550−561. doi: 10.1111/j.1365-313X.2008.03625.x
    [29]
    Wang L C, Tsai M C, Chang K Y, et al. Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress[J]. Journal of Experimental Botnay, 2011, 62(10): 3609−3620. doi: 10.1093/jxb/err060
    [30]
    Lee C F, Pu H Y, Wang L C, et al. Mutation in a homolog of yeast Vps53p accounts for the heat and osmotic hypersensitive phenotypes in Arabidopsis hit1-1 mutant[J]. Planta, 2006, 224(2): 330−338. doi: 10.1007/s00425-005-0216-6
    [31]
    Hillmann F, Bagramyan K, Straßburger M, et al. The crystal structure of peroxiredoxin Asp f3 provides mechanistic insight into oxidative stress resistance and virulence of Aspergillus fumigatus[J/OL]. Scientific Reports, 2016, 6(1): 33396 (2016−09−14) [2019−08−03]. https://doi.org/10.1186/1471-2164-14-554.
    [32]
    Meskauskiene R, Würsch M, Laloi C, et al. A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses 1O2-induced cell death[J]. Plant Journal, 2009, 60(3): 399−410. doi: 10.1111/j.1365-313X.2009.03965.x
    [33]
    Sarnowski T J, Ríos G, Jásik J, et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell, 2005, 17(9): 2454−2472. doi: 10.1105/tpc.105.031203
    [34]
    Lu X, Li Y, Su Y, et al. An Arabidopsis gene encoding a C2H2-domain protein with alternatively spliced transcripts is essential for endosperm development[J]. Journal of Experimental Botany, 2012, 63(16): 5935−5944. doi: 10.1093/jxb/ers243
    [35]
    Shen W H, Parmentier Y, Hellmann H, et al. Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis[J]. Molecular Biology of the Cell, 2002, 13(6): 1916−1928. doi: 10.1091/mbc.e02-02-0077
    [36]
    Hobbie L, McGovern M, Hurwitz L R, et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development[J]. Development, 2000, 127(1): 23−32.
    [37]
    Song J B, Huang S Q, Dalmay T, et al. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS[J]. Plant & Cell Physiology, 2012, 53(7): 1283−1294.
    [38]
    Kadirjan-Kalbach D K, Yoder D W, Ruckle M E, et al. FtsHi1/ARC1 is an essential gene in Arabidopsis that links chloroplast biogenesis and division[J]. Plant Journal, 2012, 72(5): 856−867. doi: 10.1111/tpj.12001
    [39]
    Fornara F, Parenicová L, Falasca G, et al. Functional characterization of OsMADS18 , a member of the AP1/SQUA subfamily of MADS box genes[J]. Plant Physiology, 2004, 135(4): 2207−2219. doi: 10.1104/pp.104.045039
    [40]
    Yoo S Y, Kim Y, Kim S Y, et al. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J/OL]. PLoS ONE, 2007, 2(7): e642(2007−07−25)[2020−10−12]. https://doi.org/10.1371/journal.pone.0000642.
    [41]
    Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J]. Plant Physiology, 2007, 143(4): 1789−1801. doi: 10.1104/pp.106.093971
    [42]
    Shin D H, Cho M H, Kim T L, et al. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development[J]. Journal of Biological Chemistry, 2010, 285(42): 32151−32159. doi: 10.1074/jbc.M110.133710
  • Related Articles

    [1]Shao Chenxi, Liang Yingmei, Lao Wenhao, Li Yunfan. Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves[J]. Journal of Beijing Forestry University, 2024, 46(11): 34-42. DOI: 10.12171/j.1000-1522.20230298
    [2]Ding Mengdong, Wei Xueda, Wang Yu, Zhu Xuli. Using system mapping to analyze genetic regulation mechanism of neighboring plant interaction in Populus szechuanica var. tibetica[J]. Journal of Beijing Forestry University, 2024, 46(10): 63-73. DOI: 10.12171/j.1000-1522.20220519
    [3]Yang Zhenyu, Zhu Xuli, Cao Yige, Ren Xiangyu, Wu Rongling. Network construction of genome-wide epistatic interaction for plant height traits in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(9): 21-32. DOI: 10.12171/j.1000-1522.20220146
    [4]Wang Yin, Yao Ruiling, Chen Zhenhua, Gan Deyu, Peng Jian. Preliminary study on the interaction effect between genotypes and environment of growth traits in Pinus massoniana clones[J]. Journal of Beijing Forestry University, 2023, 45(5): 47-56. DOI: 10.12171/j.1000-1522.20210312
    [5]Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12-22. DOI: 10.12171/j.1000-1522.20220027
    [6]Zhang Pingdong, Zhang Feng, Sun Jing, Song Lianjun, Kang Xiangyang. Interactions between environment and traits and analysis of stability in new triploid clones of Populus tomentosa[J]. Journal of Beijing Forestry University, 2019, 41(7): 31-38. DOI: 10.13332/j.1000-1522.20190106
    [7]ZHAO Hui, WANG Sui, JIANG Jing, LIU Gui-feng. Screening of Populus simonii×Populus nigra WRKY70-interactive proteins by the yeast two-hybrid system[J]. Journal of Beijing Forestry University, 2016, 38(2): 44-51. DOI: 10.13332/j.1000-1522.20150162
    [8]ZHANG Chun-yu. Explaining diversity patterns of forest community through species interactions#br#[J]. Journal of Beijing Forestry University, 2014, 36(6): 60-65. DOI: 10.13332/j.cnki.jbfu.2014.06.013
    [9]XIE Jin, TIAN Xiao-ming, LIU Shu-xin, HOU Jia-yin, GAI Ying, JIANG Xiang-ning. Optimal protein extracting methods of Populus tomentosa buds for two鄄dimensional gel electrophoresis.[J]. Journal of Beijing Forestry University, 2013, 35(4): 144-148.
    [10]LIANG Jun, WANG Yuan, , ZHANG Xing-yao. Cytochemical localization of peroxidase in the interactions of poplar and Botryosphaeria dothidea.[J]. Journal of Beijing Forestry University, 2008, 30(6): 107-111.
  • Cited by

    Periodical cited type(4)

    1. 杨桦,李祥乾,王帆,方睿,杨伟. 长足大竹象信息素结合蛋白CbuqPBP2互作蛋白的筛选与验证. 西北农林科技大学学报(自然科学版). 2024(01): 87-97 .
    2. 万超,张月,胡莉,伍炳华,袁媛. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化. 福建农业学报. 2022(02): 164-169 .
    3. 武建颖,张燕,孙贺贺,赵玉兰,董金皋,申珅,郝志敏. 玉米大斑病菌蛋白激酶A催化亚基StPKA-C1/C2的表达与互作蛋白筛选. 农业生物技术学报. 2022(10): 1976-1986 .
    4. 胡莉,万超,张蕖,陈清西,伍炳华,袁媛. 茉莉花JsMYB305转录因子互作蛋白的筛选及验证. 福建农业学报. 2022(09): 1135-1144 .

    Other cited types(9)

Catalog

    Article views (1833) PDF downloads (120) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return