• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Xin, Wang Jianjun, Du Zhi, Wang Wenwen, Meng Jinghui. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1-11. DOI: 10.12171/j.1000-1522.20210353
Citation: Yang Xin, Wang Jianjun, Du Zhi, Wang Wenwen, Meng Jinghui. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1-11. DOI: 10.12171/j.1000-1522.20210353

Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors

More Information
  • Received Date: September 06, 2021
  • Revised Date: March 02, 2022
  • Available Online: August 02, 2022
  • Published Date: August 24, 2022
  •   Objective  This research aims to develop an individual-tree diameter increment model of natural Larix gmelinii forests based on climatic factors in order to predict the DBH growth and provide a theoretical basis for the management of natural Larix gmelinii forests in Daxing’an Mountain Region, Inner Mongolia of northern China.
      Method  Based on the 187 permanent sample plots of natural Larix gmelinii forests (national forest continuous inventory in 2013 and 2018) in Daxing’an Mountains and climate data, we employed the step-by-step regression analysis to develop a traditional individual-tree diameter growth model considering climatic factors. On this basis, sample plot effects were further introduced to develop individual-tree mixed-effect model of Larix gmelinii. Finally, the basic and mixed-effect models were tested using independent test sample data.
      Result  Mean annual temperature (MAT) and mean precipitation of growing season (Pgm) were the main climatic factors which affected DBH growth of Larix gmelinii in the region. MAT and Pgm were positively correlated with the DBH growth. Other factors significantly affecting the DBH growth included the reciprocal of the initial DBH (1/DBH), basal area of trees larger than the subject tree (BAL) and the number of trees (NT), and all of them showed negative correlation with the DBH growth. The coefficient of determination (R2), mean absolute error (MAE) and root-mean-square error (RMSE) for the mixed-effect model were 0.760 4, 0.386 6 and 0.486 3 cm2, respectively. Compared with traditional model, the R2 of mixed-effect model increased by 0.321 7, and the MAE and RMSE reduced by 0.230 6 and 0.267 4 cm2, respectively. The mixed-effect model also showed better fitting accuracy in the model tests.
      Conclusion  Using individual-tree mixed-effect model based on climatic factors can well describe the DBH growth process of Larix gmelinii in Daxing’an Mountain Region, Inner Mongolia.
  • [1]
    张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6): 1851−1859. doi: 10.13287/j.1001-9332.201706.009

    Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1851−1859. doi: 10.13287/j.1001-9332.201706.009
    [2]
    杜志, 陈振雄, 孟京辉, 等. 基于混合效应的马尾松单木断面积预估模型[J]. 中南林业科技大学学报, 2020, 40(9): 33−40.

    Du Z, Chen Z X, Meng J H, et al. Prediction model of individual-tree basal area for Pinus massoniana based on mixed effect[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 33−40.
    [3]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311
    [4]
    杜纪山. 用二类调查样地建立落叶松单木直径生长模型[J]. 林业科学研究, 1999, 12(2): 160−164. doi: 10.3321/j.issn:1001-1498.1999.02.008

    Du J S. Modeling individual tree growth of Larix by using forest management inventory plots[J]. Forest Research, 1999, 12(2): 160−164. doi: 10.3321/j.issn:1001-1498.1999.02.008
    [5]
    刘平, 马履一, 王玉涛, 等. 油松中幼龄人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2): 197−201. doi: 10.3969/j.issn.1000-1700.2009.02.016

    Liu P, Ma L Y, Wang Y T, et al. Individual DBH growth model of Pinus tabulaeformis young-middle aged plantation[J]. Journal of Shenyang Agricultural University, 2009, 40(2): 197−201. doi: 10.3969/j.issn.1000-1700.2009.02.016
    [6]
    马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究−Ⅰ. 直径生长量模型[J]. 西北农林科技大学(自然科学版), 2015, 43(2): 99−105.

    Ma W, Lei X D, Xu G, et al. Growth models for natural Quercus mongolica forests (Ⅰ): diameter growth model[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(2): 99−105.
    [7]
    闫明准, 刘兆刚. 帽儿山地区次生林椴树单木胸高断面积生长模型的研究[J]. 森林工程, 2009, 25(2): 1−4,21. doi: 10.3969/j.issn.1001-005X.2009.02.001

    Yan M Z, Liu Z G. Study on growth model of section area of breast height of Tilia amurensis individual tree of secondary forest in Mao’ershan Mountain region[J]. Forest Engineering, 2009, 25(2): 1−4,21. doi: 10.3969/j.issn.1001-005X.2009.02.001
    [8]
    卢军. 长白山地区天然混交林单木生长模型的研究[D]. 哈尔滨: 东北林业大学, 2005.

    Lu J. Individual tree growth models for natural mixed forests in the region of Changbai Mountains[D]. Harbin: Northeast Forestry University, 2005.
    [9]
    王建军, 曾伟生, 孟京辉. 考虑预估期间林木枯死及采伐影响的杉木单木胸高断面积生长模型研究[J]. 西北林学院学报, 2017, 32(3): 181−185. doi: 10.3969/j.issn.1001-7461.2017.03.34

    Wang J J, Zeng W S, Meng J H. Individual-tree basal area growth model for Cunninghamia lanceolata with the consideration of thinning and tree mortality in the prediction interval[J]. Journal of Northwest Forestry University, 2017, 32(3): 181−185. doi: 10.3969/j.issn.1001-7461.2017.03.34
    [10]
    臧颢. 区域尺度气候敏感的落叶松人工林林分生长模型[D]. 北京: 中国林业科学研究院, 2016.

    Zang H. Regional-scale climate-sensitive stand growth models for larch plantations[D]. Beijing: Chinese Academy of Forestry, 2016.
    [11]
    桑杰. 基于R语言的气候影响下青冈栎非线性混合效应生长预测模型[D]. 长沙: 中南林业科技大学, 2019.

    Sang J. Nonlinear mixed effect growth prediction model of Quercus glauca under climatic influence based on R language[D]. Changsha: Central South University of Forestry & Technology, 2019.
    [12]
    Subedi N, Sharma M. Climate-diameter growth relation-ships of black spruce and jack pine trees in boreal Ontario, Canada[J]. Global Change Biology, 2013, 19: 506−516.
    [13]
    Subedi N, Sharma M. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario[J]. Forest Ecology and Management, 2011, 261(11): 2140−2148. doi: 10.1016/j.foreco.2011.03.010
    [14]
    刘帅, 李建军, 卿东升, 等. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110

    Liu S, Li J J, Qing D S, et al. A climatic-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110
    [15]
    齐战涛, 朱光玉, 许冰冰, 等. 含气候效应的湖南杉木人工林断面积生长模型[J]. 中南林业科技大学学报, 2021, 41(5): 66−73.

    Qi Z T, Zhu G Y, Xu B B, et al. Basal area growth model of Cunninghamia lanceolata plantation in Hunan Province with climate effect[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5): 66−73.
    [16]
    Wang M, Zhao Y H, Zhen Z, et al. Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J]. Journal of Forestry Research, 2021, 32(4): 1535−1552. doi: 10.1007/s11676-020-01177-9
    [17]
    余黎, 雷相东, 王雅志, 等. 基于广义可加模型的气候对单木胸径生长的影响研究[J]. 北京林业大学学报, 2014, 36(5): 22−32.

    Yu L, Lei X D, Wang Y Z, et al. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22−32.
    [18]
    欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松−云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9): 9−19.

    Ou Q X, Lei X D, Shen C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9−19.
    [19]
    王震, 鲁乐乐, 张雄清, 等. 基于贝叶斯模型平均法构建杉木林分蓄积量生长模型[J]. 林业科学研究, 2021, 34(3): 64−71.

    Wang Z, Lu L L, Zhang X Q, et al. Stand volume growth model Chinese fir plantations based on bayesian model averaging approach[J]. Forest Research, 2021, 34(3): 64−71.
    [20]
    Saud P, Lynch T B, Cram D S, et al. An annual basal area growth model with multiplicative climate modifier fitted to longitudinal data for short leaf pine[J]. Forestry, 2019, 5: 1−16.
    [21]
    Jordan L, Daniels R F, Clark A III, et al. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle[J]. Forest Science, 2005, 51(4): 357−371.
    [22]
    彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 19−27.

    Peng W, Li F R, Dong L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 19−27.
    [23]
    许昊, 孙玉军, 王新杰, 等. 利用线性混合效应模型模拟杉木人工林枝条生物量[J]. 应用生态学报, 2015, 26(10): 2969−2977.

    Xu H, Sun Y J, Wang X J, et al. Simulation of the branch biomass for Chinese fir plantation using the linear mixed effects model[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 2969−2977.
    [24]
    邱思玉, 孙玉军. 长白落叶松人工林单木冠幅模型[J]. 东北林业大学学报, 2021, 49(2): 49−53.

    Qiu S Y, Sun Y J. Individual tree crown width prediction models for Larix olgensis plantation[J]. Journal of Northeast Forestry University, 2021, 49(2): 49−53.
    [25]
    王帅玲, 龙时胜, 曾思齐, 等. 湖南栎类次生林林分断面积生长模型[J]. 中南林业科技大学学报, 2021, 41(8): 84−91.

    Wang S L, Long S S, Zeng S Q, et al. Basal area growth model of oak secondary forest in Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2021, 41(8): 84−91.
    [26]
    王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2): 29−38, 46.

    Wang S J, Deng H F, Xiang W, et al. Establishment of predicting models for Pinus tabulaeformis stands volume based on mixed models[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38, 46.
    [27]
    蒋延玲. 全球变化的中国北方林生态系统生产力及其生态系统公益[D]. 北京: 中国科学院植物研究所, 2001.

    Jiang Y L. Study on the productivity of Chinese boreal forest ecosystem under global change and ecosystem service assessment[D]. Beijing: Institute of Botany, the Chinese Academy of Sciences, 2001.
    [28]
    陆玉宝. 兴安落叶松天然林林分结构与生产力特征的研究[D]. 呼和浩特: 内蒙古农业大学, 2006.

    Lu Y B. Study on the characteristics of stand structure and productivity in Larix gmelinii natural forest[D]. Hohhot: Inner Mongolia Agricultural University, 2006.
    [29]
    高旭. 内蒙古大兴安岭重点国有林区经济转型发展研究[D]. 通辽: 内蒙古民族大学, 2017.

    Gao X. Study on economic transition and development of key stated-owned forest areas in Daxing’an mountains of Inner Mongolia[D]. Tongliao: Inner Mongolia Minzu University, 2017.
    [30]
    萨如拉, 王雪鑫, 徐加睿, 等. 大兴安岭兴安落叶松天然林单木生长规律与模型研究[J]. 西南林业大学学报(自然科学), 2020, 40(2): 111−116.

    Sarula, Wang X X, Xu J R, et al. Study on the growth and models of single tree of Larix gmelinii natural forest in Daxing’an Mountains[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(2): 111−116.
    [31]
    Wang T, Hamann A, Spittlehouse D L, et al. Climatewna-high-resolution spatial climate data for western north America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
    [32]
    刘浩, 张秋良. 兴安落叶松林生长季蒸散量特征[J]. 中南林业科技大学学报, 2021, 41(3): 149−156.

    Liu H, Zhang Q L. Characteristics of evapotranspiration in Larix gmelinii forest during growing seasons[J]. Journal of Central South University of Forestry & Technology, 2021, 41(3): 149−156.
    [33]
    Bella I E. A new competition model for individual trees[J]. Forest Science, 1971, 17: 364−372.
    [34]
    Wykoff W R. A basal area increment model for individual conifer in the northern Rocky Mountains[J]. Forestry Science, 1990, 36: 1077−1104.
    [35]
    王蒙, 李凤日. 基于抚育间伐效应的长白落叶松人工林单木直径生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 28−36.

    Wang M, Li F R. Modelling individual tree diameter growth for Larix olgensis based on thinning effects[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 28−36.
    [36]
    陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7): 12−22. doi: 10.12171/j.1000-1522.20190236

    Chen G D, Du Y, Ding P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12−22. doi: 10.12171/j.1000-1522.20190236
    [37]
    Wang Y, Lemay V M, Baker T G. Modelling and prediction of dominant height and site index of Eucalyptus globules plantations using a nonlinear mixed-effects model approach[J]. Canadian Journal of Forest Research, 2007, 37(8): 1390−1403. doi: 10.1139/X06-282
    [38]
    Vonesh E F , Chinchilli V M . Linear and nonlinear models for the analysis of repeated measurements[M]. New York: Marcel Dekker Inc, 1997.
    [39]
    Monserud R A, Yang Y, Huang S, et al. Potential change in lodgepole pine site index and distribution under climatic change in Alberta[J]. Canadian Journal of Forest Research, 2008, 38(2): 343−352. doi: 10.1139/X07-166
    [40]
    Huang J G, Yves B, Frank B, et al. Impact of future climate on radial growth of four major boreal tree species in the eastern Canadian boreal forest[J/OL]. PLoS One, 2013, 8(2): e56758[2013−02−28]. https://doi.org/10.1371/journal.pone.0056758.
    [41]
    白学平, 常永兴, 张先亮, 等. 近30年快速升温对两种典型小地形上兴安落叶松径向生长的影响[J]. 应用生态学报, 2016, 27(12): 3853−3861.

    Bai X P, Chang Y X, Zhang X L, et al. Impacts of rapid growth of Larix gmelinii on two typical micro-topographies in the recent 30 years[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3853−3861.
    [42]
    张朋磊, 刘滨辉. 气候变化对不同纬度兴安落叶松径向生长的影响[J]. 东北林业大学学报, 2015, 43(3): 10−13, 22. doi: 10.3969/j.issn.1000-5382.2015.03.003

    Zhang P L, Liu B H. Effect of climate change on Larix gmelinii growth in different latitudes[J]. Journal of Northeast Forestry University, 2015, 43(3): 10−13, 22. doi: 10.3969/j.issn.1000-5382.2015.03.003
    [43]
    Liang E Y, Shao X M, Hu Y X, et al. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China[J]. Trees, 2001, 15(4): 230−235. doi: 10.1007/s004680100097
    [44]
    Deslauriers A, Huang J G, Balducci L, et al. The contribution of carbon and water in modulating wood formation in black spruce saplings[J]. Plant Physiology, 2016, 170(4): 2072−2084. doi: 10.1104/pp.15.01525
    [45]
    Huang S, Titus S J. An individual tree diameter increment model for white spruce in Alberta[J]. Revue Canadienne de Recherche Forestière, 1995, 25(9): 1455−1465.
    [46]
    Adame P, Hynynen J, Cañellas I, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices[J]. Forest Ecology and Management, 2008, 255(3−4): 1011−1022. doi: 10.1016/j.foreco.2007.10.019
    [47]
    Zhang X. A linkage among whole-stand model, individual-tree model and diameter-distribution model[J]. Journal of Forest Science, 2010, 56(56): 600−608.
    [48]
    Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecological Modelling, 2003, 163(3): 209−222. doi: 10.1016/S0304-3800(03)00008-5
    [49]
    Condés S, Sterba H. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area[J]. European Journal of Forest Research, 2008, 127(3): 253−261. doi: 10.1007/s10342-007-0201-7
    [50]
    Kim M, Lee W K, Kim Y S, et al. Impact of thinning intensity on the diameter and height growth of Larix kaempferi stands in central Korea[J]. Forest Science and Technology, 12(2): 77−87.
    [51]
    Graham J S. Thinning increases diameter growth of paper Birch in the Susitna Valley, Alaska: 20 year results[J]. Northern Journal of Applied Forestry, 1998, 15(3): 113−115. doi: 10.1093/njaf/15.3.113
    [52]
    Rytter L. Effects of thinning on the obtainable biomass, stand density, and tree diameters of intensively grown grey alder plantations[J]. Forest Ecology and Management, 1995, 73(1−3): 135−143. doi: 10.1016/0378-1127(94)03498-L
    [53]
    Uzoh F C C, Oliver W W. Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models[J]. Forest Ecology and Management, 2006, 221(1−3): 147−154. doi: 10.1016/j.foreco.2005.09.012
    [54]
    Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Silva Fennica, 2005, 39: 37−54.
    [55]
    符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23−31.

    Fu L Y, Tang S Z, Zhang H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23−31.
  • Related Articles

    [1]Xie Chen, Zhang Yang. Effects of deep eutectic solvents pretreatment on performance of surface mineralized wood[J]. Journal of Beijing Forestry University, 2024, 46(7): 123-132. DOI: 10.12171/j.1000-1522.20240067
    [2]Cao Ting, Zhang Ye, Sun Ziqing, Wang Mingzhi. Flame retardant properties of MIL-100 (Fe) treated poplar wood[J]. Journal of Beijing Forestry University, 2024, 46(1): 152-162. DOI: 10.12171/j.1000-1522.20230225
    [3]Ding Mengyi, Ren Qikai, Luo Jingying, Wang Mingzhi. Preparation and adsorption property of phytic acid modified wood flour[J]. Journal of Beijing Forestry University, 2022, 44(2): 131-140. DOI: 10.12171/j.1000-1522.20210273
    [4]Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109-117. DOI: 10.12171/j.1000-1522.20210299
    [5]Liu Qiangqiang, Lü Wenhua, Shi Yuan, Du Haojia. Preparation and properties of heat-treated poplar wood modified with composite silicon modifier[J]. Journal of Beijing Forestry University, 2021, 43(1): 136-143. DOI: 10.12171/j.1000-1522.20200266
    [6]Wu Yuhui, Zhang Shaodi, Ren Zizhong, Wang Mingzhi. Flame retardant properties of phytic acid and melamine treated wood[J]. Journal of Beijing Forestry University, 2020, 42(4): 155-161. DOI: 10.12171/j.1000-1522.20190406
    [7]HU Wen-gang, BAI Jue, GUAN Hui-yuan. Investigation on a method of increasing mortise and tenon joint strength of a fast growing wood[J]. Journal of Beijing Forestry University, 2017, 39(4): 101-107. DOI: 10.13332/j.1000-1522.20160400
    [8]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [9]ZHANG Xiao-teng, XUE Lei, ZHANG Yu, CHU De-miao, MU Jun. Pyrolysis characteristics and kinetics of poplar treated by compound N-P flame retardant[J]. Journal of Beijing Forestry University, 2016, 38(1): 112-117. DOI: 10.13332/j.1000--1522.20150173
    [10]FENG Jian-wen, WANG Feng-qiang, SUN Li-chao, WANG Qing-wen. Fire retardant properties of intumescent waterborne fireretardant coatings based on MUF-PVAc mixed resin for wood.[J]. Journal of Beijing Forestry University, 2012, 34(4): 160-164.
  • Cited by

    Periodical cited type(4)

    1. 许卓凡,苏毅,孙喆,贺鼎,王思思. 我国长城生态环境研究30年:趋势、脉络与特征. 北京规划建设. 2023(03): 111-116 .
    2. 陈心曲,丁忠义,杨俊,陈晓东,陈媚楠. 沛北矿城复合区景观生态风险评价及驱动力分析. 生态学杂志. 2022(09): 1796-1803 .
    3. 李少玲,谢苗苗,李汉廷,王回茴,许萌,周伟. 资源型城市景观生态风险的时空分异:以乌海市为例. 地学前缘. 2021(04): 100-109 .
    4. 杨丽花,白翠玲,和文征. 基于生态文明视角下河北省长城旅游资源开发研究. 河北地质大学学报. 2017(06): 135-140 .

    Other cited types(11)

Catalog

    Article views (1106) PDF downloads (138) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return