• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. DOI: 10.13332/j.1000-1522.20160193
Citation: MAO Hong-rui, JIN Guang-ze. Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2017, 39(8): 42-49. DOI: 10.13332/j.1000-1522.20160193

Impacts of nitrogen addition on net primary productivity in the typical mixed broadleaved-Korean pine forest

More Information
  • Received Date: June 12, 2016
  • Revised Date: December 12, 2016
  • Published Date: July 31, 2017
  • The impact of nitrogen (N) on net primary productivity (NPP) of forest ecosystem has become focus of the researchers since N deposition is increasingly serious. A six-year field experiment was conducted in the typical mixed broadleaf-Korean pine forest in Xiaoxing'an Mountains, northeastern China, to explore the effects of N addition on carbon (C) density and NPP of forest ecosystem and its components. Urea was selected as N source and four levels of N addition were control (N0, 0kg/(ha·a), low N (N1, 30kg/(ha·a), medium N (N2, 60kg/(ha·a) and high N (N3, 120kg/(ha·a). Results showed that N addition had no significant effects on C density of vegetation C pool, detritus C pool and soil organic C pool (P>0.05). N addition had no significant effects on the NPP of whole forest ecosystem, however, it inhibited NPP of coniferous tree leaf but promoted that of broadleaved trees (P < 0.05). Soil total N concentration had no significant difference among different N addition treatments, but it had a highly significantly positive correlation with soil organic C concentration (P < 0.01). We suggest that soil total N concentration has a significant influence on soil organic C in forest ecosystem, rather than N addition amount.
  • [1]
    GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi: 10.1007/s10533-004-0370-0
    [2]
    HOWARTH R W, SCHLESINGER W H, VITOUSEK P M, et al. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 2008, 7: 737-750. https://www.sciencedirect.com/science/article/pii/S1240130797877382
    [3]
    HÖGBERG P. Environmental science: nitrogen impacts on forest carbon[J]. Nature, 2007, 447: 781-782. doi: 10.1038/447781a
    [4]
    LIU X, LEI D, MO J, et al. Nitrogen deposition and its ecological impact in China: an overview[J]. Environmental Pollution, 2011, 159(10): 2251-2264. doi: 10.1016/j.envpol.2010.08.002
    [5]
    THOMAS R Q, CANHAM C D, WEATHERS K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Preventive Veterinary Medicine, 2010, 3(1): 229-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e245d86d029e5e35adaeee502a8e86dd
    [6]
    SILLEN W M A, DIELEMAN W I J. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis[J]. Biogeosciences Discussions, 2012, 9(6): 2247-2258. doi: 10.5194/bg-9-2247-2012
    [7]
    LOVETT G M, GOODALE C L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest[J]. Ecosystems, 2011, 14(4): 615-631. doi: 10.1007/s10021-011-9432-z
    [8]
    ABER J D, MAGILL A, MCNULTY S G, et al. Forest biogeochemistry and primary production altered by nitrogen saturation[J]. Water, Air & Soil Pollution, 1995, 85(3): 1665-1670. doi: 10.1007-BF00477219/
    [9]
    YANO Y, MCDOWELL W H, ABER J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology & Biochemistry, 2000, 32: 1743-1751. https://harvardforest.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/publications/pdfs/Yano_SoilBiol&Biochem_2000.pdf
    [10]
    MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3: 238-253. doi: 10.1007/s100210000023
    [11]
    LOVETT G M, ARTHUR M A, WEATHERS K C, et al. Nitrogen addition increases carbon storage in soils, but not in trees, in an Eastern U.S. deciduous forest[J]. Ecosystems, 2013, 16(6): 980-1001. doi: 10.1007/s10021-013-9662-3
    [12]
    LIU L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828. doi: 10.1111/j.1461-0248.2010.01482.x
    [13]
    LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2): 234-244. http://cn.bing.com/academic/profile?id=5a3be51bd10f1eff505b5ce650e9231b&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems[J]. Scientific Reports, 2015, 5: 7952. doi: 10.1038/srep07952
    [15]
    JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. doi: 10.1038/ngeo844
    [16]
    FOSTER N W, HAZLETT P W, NICOLSON J A, et al. Ion leaching from a sugar maple forest in response to acidic deposition and nitrification[J]. Water, Air & Soil Pollution, 1989, 48(48): 251-261. http://cn.bing.com/academic/profile?id=e161eb4165dda375fdfb5082c4994820&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    肖辉林, 卓慕宁, 万洪富.大气N沉降的不断增加对森林生态系统的影响[J].应用生态学报, 1996, 7(增刊1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm

    XIAO H L, ZHUO M N, WAN H F. Effect of increased deposition of atmospheric nitrogen on forest ecosystem[J]. Chinese Journal of Applied Ecology, 1996, 7(Suppl.1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm
    [18]
    陈传国, 朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社, 1989.

    CHEN C G, ZHU J F. A handbook for main tree species biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
    [19]
    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d480b7b7505f7c5bcdc3b33c43141c0f
    [20]
    董利虎, 李凤日, 贾炜玮, 等.含度量误差的黑龙江省主要树种生物量相容性模型[J].应用生态学报, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024

    DONG L H, LI F R, JIA W W, et al. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024
    [21]
    刘妍妍, 金光泽.地形对小兴安岭阔叶红松(Pinus koraiensis)林粗木质残体分布的影响[J].生态学报, 2009, 29(3): 1398-1407. doi: 10.3321/j.issn:1000-0933.2009.03.037

    LIU Y Y, JIN G Z. Influence of topography on coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2009, 29(3): 1398-1407. doi: 10.3321/j.issn:1000-0933.2009.03.037
    [22]
    中华人民共和国农林部. LY 208-77树木材积表[S].北京: 中国标准出版社, 1978.

    Ministry of Agriculture and Forestry of the People's Republic of China. LY 208-77 tree volume table[S]. Beijing: China Standards Press, 1978.
    [23]
    CLARK D A, BROWN S, KICKLIGHTER D W, et al. Measuring net primary production in forests: concepts and field methods[J]. International Journal of Heat & Mass Transfer, 2008, 46(22): 4235-4244. https://academic.oup.com/treephys
    [24]
    XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179(2): 428-439. doi: 10.1111/j.1469-8137.2008.02488.x
    [25]
    RUSSELL A E, LAIRD D A, PARKIN T B, et al. Impact of nitrogen fertilization and cropping system on carbon sequestration in midwestern Mollisols[J]. Soil Science Society of America Journal, 2005, 69(2): 413-422. doi: 10.2136/sssaj2005.0413
    [26]
    TRESEDER K K, HOLDEN S R. Fungal carbon sequestration[J]. Science, 2013, 339: 1528-1529. doi: 10.1126/science.1236338
    [27]
    毛宏蕊, 陈金玲, 金光泽.氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J].北京林业大学学报, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139

    MAO H R, CHEN J L, JIN G Z. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139
    [28]
    唐凤德, 韩士杰, 张军辉.长白山阔叶红松林生态系统碳动态及其对气候变化的响应[J].应用生态学报, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004

    TANG F D, HAN S J, ZHANG J H. Carbon dynamics of broad-leaved Korean pine forest ecosystem in Changbai Mountains and its responses to climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004
    [29]
    D'ORANGEVILLE L, HOULE D, CÔTÉ B, et al. Increased soil temperature and atmospheric N deposition have no effect on the N status and growth of a mature balsam fir forest[J]. Biogeosciences, 2013, 10: 4627-4639. doi: 10.5194/bg-10-4627-2013
    [30]
    LLOYD J, TAYLOR J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315-323. doi: 10.2307-2389824/
    [31]
    NADELHOFFER K J, EMMETT B A, GUNDERSEN P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-148. doi: 10.1038/18205
    [32]
    FLEISCHER K, REBEL K T, MOLEN M K V D, et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests[J]. Global Biogeochemical Cycles, 2013, 27(1): 187-199. doi: 10.1002/gbc.20026
    [33]
    TATARINOV F A, CIENCIALA E. Application of BIOME-BGC model to managed forests (1): sensitivity analysis[J]. Forest Ecology and Management, 2007, 237(1): 267-279. http://cn.bing.com/academic/profile?id=a11b3455a2eab745fa9d12ba4b7af737&encoded=0&v=paper_preview&mkt=zh-cn
    [34]
    KRAUSE K, CHERUBINI P, BUGMANN H, et al. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes[J]. Tree Physiology, 2012, 32(12): 1471-1481. doi: 10.1093/treephys/tps109
    [35]
    VOGT K A, GRIER C C, MEIER C E, et al. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington[J]. Ecology, 1982, 63(2): 370-380. doi: 10.2307/1938955
    [36]
    ZHAO M, XIANG W, TIAN D, et al. Effects of increased nitrogen deposition and rotation length on long-term productivity of Cunninghamia lanceolata plantation in southern China[J/OL]. PLoS ONE, 2013, 8(2): e55376[2016-09-21]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055376.
    [37]
    YE X, WANG A, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141. doi: 10.1016/j.csr.2014.07.015
    [38]
    LU X, GILLIAM F S, YU G, et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems[J]. Biogeosciences Discussions, 2013, 10(1): 1451-1481. doi: 10.5194/bgd-10-1451-2013
    [39]
    EDWARDS P J. Studies of mineral cycling in a montane rain forest in New Guinea (Ⅱ): the production and disappearance of litter[J]. Journal of Ecology, 1977, 65(3): 971-992. doi: 10.2307/2259388
    [40]
    FRANGI J L, LUGO A E. Ecosystem dynamics of a subtropical floodplain forest[J]. Ecological Monographs, 1985, 55(3): 351-369. doi: 10.2307/1942582
    [41]
    EISSENSTAT D M, YANAI R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-60. doi: 10.1016/S0065-2504(08)60005-7
    [42]
    GUNDERSEN P, EMMETT B A, KJONAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1): 37-55 doi: 10.1016-S0378-1127(97)00124-2/
    [43]
    KJØNAAS O J, STUANES A O, HUSE M. Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden[J]. Forest Ecology and Management, 1998, 101: 227-249. doi: 10.1016/S0378-1127(97)00140-0
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
    [3]Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. DOI: 10.12171/j.1000-1522.20210044
    [4]Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. DOI: 10.12171/j.1000-1522.20190315
    [5]Liu Guanhong, Li Bingyi, Gong Dapeng, Li Weike, Liu Xiaodong. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29-40. DOI: 10.13332/j.1000-1522.20180339
    [6]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [7]Han Mei, Wen Peng, Xu Huimin, Zhang Yongfu, Li Weike, Liu Xiaodong. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95-101. DOI: 10.13332/j.1000-1522.20180249
    [8]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [9]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [10]LI Li-ping, XING Shao-hua, ZHAO Bo, WANG Qing-chun, CUI Guo-fa. Comparative analysis of plant diversity of Pinus tabulaeformis forests in ten regions of Beijing mountainous areas[J]. Journal of Beijing Forestry University, 2005, 27(4): 12-16.
  • Cited by

    Periodical cited type(4)

    1. 闫宇,邓焯,李斌,赵天忠. 基于Landsat 8数据的人工林地上生物量估测模型研究. 西北林学院学报. 2024(05): 53-60+77 .
    2. 张双印,赵保成,赵登忠,周伟,任斐鹏,付重庆,郑航,郑学东,徐平. 长江源草地生物量空间分布及分配初步研究. 长江科学院院报. 2024(11): 196-202 .
    3. 崔立晗,郑盛,徐敏. 内蒙古森林和草地地上生物量遥感反演. 地理科学. 2024(12): 2215-2224 .
    4. 姬永杰,徐昆鹏,张王菲,史建敏,张甫香. 不同波长极化SAR数据水云模型森林生物量反演对比分析. 北京林业大学学报. 2023(02): 24-33 . 本站查看

    Other cited types(5)

Catalog

    Article views (2223) PDF downloads (36) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return