Citation: | LIU Zhi, CAO Jin-zhen. Study on hydrophobic characteristics of wood surface modified by a silica/silicone oil complex emulsion combined with thermal post-treatment[J]. Journal of Beijing Forestry University, 2017, 39(7): 103-110. DOI: 10.13332/j.1000-1522.20170087 |
[1] |
曹金珍, 于丽丽.水基防腐处理木材的性能研究[M].北京:科学出版社, 2010: 15-20.
CAO J Z, YU L L. Study on wood properties treated by water based preservatives[M]. Beijing: Science Press, 2010: 15-20.
|
[2] |
李坚.木材保护学[M].北京:科学出版社, 2006: 56-63.
LI J. Wood protection[M]. Beijing: Science Press, 2006: 56-63.
|
[3] |
BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. doi: 10.1007/s004250050096
|
[4] |
CHU Z L, SEEGER S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles[J]. RSC Advances, 2015, 28(5): 21999-22004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a255dccc2e3750a7f833be6a96e2e251
|
[5] |
FU Y C, YU H P, SUN Q F, et al. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment[J]. Holzforschung, 2012, 66(6): 739-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99916f3ef19a293bad9b7f051142e087
|
[6] |
GAN W T, GAO L K, SUN Q F, et al. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties[J]. Applied Surface Science, 2015, 332(3): 565-572. https://www.sciencedirect.com/science/article/pii/S0169433215002482
|
[7] |
GAO L K, LU Y, ZHAN X X, et al. A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane[J]. Surface & Coatings Technology, 2015, 262(2): 33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=739b54bc4a609b767c45defbae0aa949
|
[8] |
HSIEH C T, CHEN J M, KUO R R, et al. Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles[J]. Applied Surface Science, 2005, 240(1-4): 318-326. doi: 10.1016/j.apsusc.2004.07.016
|
[9] |
HSIEH C T, WU T L, YANG S Y. Superhydrophobicity from composite nano / microstructures: carbon fabrics coated with silica nanoparticles[J]. Surface & Coatings Technology, 2008, 202(24): 6103-6108. https://www.sciencedirect.com/science/article/abs/pii/S0257897208006452
|
[10] |
ABRAHAM M. The lotus effect: superhydrophobicity and metastability[J]. Langmuir, 2004, 20(9): 3517-3519. doi: 10.1021/la036369u
|
[11] |
江雷.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007: 73-78.
JIANG L. Bioinspired intelligent nanostructured interfacial materials[M]. Beijing: Chemical Industry Press, 2007: 73-78.
|
[12] |
LIU C Y, WANG S L, SHI J Y, et al. Fabrication of superhydrophobic wood surfaces via a solution-immersion process[J]. Applied Surface Science, 2011, 258 (2): 761-765. doi: 10.1016/j.apsusc.2011.08.077
|
[13] |
WANG X Q, CHAI Y B, LIU J L. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane[J]. Holzforschung, 2013, 67(6): 667-672. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6449afb086d60f2d88e1919f0cdeeea0
|
[14] |
CHANG H J, TU K K, WANG X Q, et al. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles[J]. RSC Advances, 2015, 39(5): 30647-30653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93f6cd5b7ce349055d47dac1e752028a
|
[15] |
WANG S L, SHI J Y, LIU C Y, et al. Fabrication of a superhydrophobic surface on a wood substrate[J]. Applied Surface Science, 2011, 257(22): 9362-9365. doi: 10.1016/j.apsusc.2011.05.089
|
[16] |
JIN C D, LI J P, HAN S J, et al. Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity[J]. Journal of Alloys and Compounds, 2015, 635(3): 300-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce1dee8c4ac71b6c9a4e9502d3551f2a
|
[17] |
GAO L K, LU Y, LI J, et al. Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane[J]. Holzforschung, 2015, 70(1): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hf-2014-0226
|
[18] |
JIN C D, LI J P, HAN S J, et al. A durable, superhydrophobic, superoleophobic andcorrosion-resistant coating with rose-like ZnO nanoflowerson a bamboo surface[J]. Applied Surface Science, 2014, 320(18): 322-327. https://www.sciencedirect.com/science/article/pii/S016943321402056X
|
[19] |
WANG S L, WANG C Y, LIU C Y, et al. Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403(5): 29-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8fce94c085f756dfe365601d947c6361
|
[20] |
LIU F, WANG S L, ZHANG M, et al. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer[J]. Applied Surface Science, 2013, 280(8): 686-692. https://www.sciencedirect.com/science/article/pii/S0169433213009707
|
[21] |
LIU M, QING Y, WU Y Q, et al. Facile fabrication of superhydrophobic surfaces on wood substratesvia a one-step hydrothermal process[J]. Applied Surface Science, 2015, 330(1): 332-338. https://www.sciencedirect.com/science/article/pii/S0169433215000343
|
[22] |
CHU Z L, SEEGER S. Robust superhydrophobic wood obtained by spraying silicone nanoparticles[J]. RSC Rsc Advances, 2015, 28(5): 21999-22004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a255dccc2e3750a7f833be6a96e2e251
|
[23] |
张明, 王成毓.超疏水SiO2/PS薄膜于木材表面的构建[J].中国工程科学, 2014, 16(4): 83-86. doi: 10.3969/j.issn.1009-1742.2014.04.017
ZHANG M, WANG C Y. Fabrication of superhydrophobic SiO2/PS coatings on wood surface[J]. Chinese Engineering Science, 2014, 16(4): 83-86. doi: 10.3969/j.issn.1009-1742.2014.04.017
|
[24] |
HSIEH C T, CHANG B S, LIN J Y. Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating[J]. Applied Surface Science, 2011, 257(8): 7997-8002. http://adsabs.harvard.edu/abs/2011ApSS..257.7997H
|
[25] |
BHUSHAN B, JUNG Y C. Wetting study of patterned surfaces for superhydrophobicity[J]. Ultramicroscopy, 2007, 107(10-11): 1033-1041. doi: 10.1016/j.ultramic.2007.05.002
|
1. |
李东来,张文华,张宏斌,陈淑鑫. 产品喷涂装置Fluent仿真内部流场数值分析. 现代制造技术与装备. 2022(07): 50-53 .
![]() |