• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Qiu Jing, Zhu Hong, Chen Xin, Tang Gengguo. Modeling the suitable areas and ecological characteristics of Sorbus alnifolia using DIVA-GIS software[J]. Journal of Beijing Forestry University, 2018, 40(9): 25-32. DOI: 10.13332/j.1000-1522.20180162
Citation: Qiu Jing, Zhu Hong, Chen Xin, Tang Gengguo. Modeling the suitable areas and ecological characteristics of Sorbus alnifolia using DIVA-GIS software[J]. Journal of Beijing Forestry University, 2018, 40(9): 25-32. DOI: 10.13332/j.1000-1522.20180162

Modeling the suitable areas and ecological characteristics of Sorbus alnifolia using DIVA-GIS software

More Information
  • Received Date: May 23, 2018
  • Revised Date: June 29, 2018
  • Published Date: August 31, 2018
  • ObjectiveSorbus alnifolia, an excellent forest germplasm resources, has significant ecological and ornamental values. An overall understanding of its natural distribution status and ecological characteristics in China will contribute to develop the resource conservation and scientific introduction planning for this species.
    MethodBased on the data from 183 field collection and historical sample documents, we applied DIVA-DIS software of geographic information technology and combined with BIOCLIM model to analyse the distribution pattern of S. alnifolia and its dominant climate factors qualitatively and quantitatively for the first time.
    ResultThe current potential distribution areas of S. alnifolia cover the provinces of Chinese eastern monsoon region, and the evaluation based on results of BIOCLIM Modeling combined with Simpson's diversity index showed that the mountainous regions of central China, coastal hilly area of northern China and northeastern China were its three most concentrated areas. Among them, border of mountainous regions projected from provinces of Shaanxi, Henan, Hubei and Chongqing and their junctions (Qinling-Daba-Wushan mountain ranges) can be regarded as its core distributing areas. Principal component analysis (PCA) of climatic variables and the dominant climate factor contributing rates were in sequence of annual mean precipitation (bio12) > precipitation in the wettest season (bio16) > seasonally varied SD of temperature (bio4) > precipitation in the warmest season (bio18) > precipitation in the coldest season (bio19). The cumulative frequency curves further confirmed that the ecological characteristics of geographical distributing area for S. alnifolia were 423.00-1 508.00 mm, 245.00-675.00 mm, 590.63-1 280.93 (SD×100), 229.00-655.00 mm and 8.00-185.00 mm, respectively. The receiver operating characteristic curve (ROC) and Kappa statistics for model assessment reached 0.782 and 0.515, respectively, meeting the general demands for prediction accuracy.
    ConclusionThe above research indicated that the current distributing pattern of S. alnifolia was mainly affected by precipitation factors driven by the eastern Asian monsoon at regional scale, also with preference of moderately low temperature and high altitude environment. What's more, differences in distributing patterns of S. alnifolia were also affected by geographical factors, including altitude, latitude and longitude to some extent.
  • [1]
    Lu L D, Spongberg S A. Flora of China:9[M]. Beijing: Science Press, 2003: 144-170.
    [2]
    郑桂芬, 王帅.水榆花楸生物学特性及育苗技术[J].防护林科技, 2017(6):120-121. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201706051

    Zheng G F, Wang S. Biological characteristics and seedling technology of Sorbus alnifolia[J]. Protection Forest Science and Technology, 2017(6): 120-121. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201706051
    [3]
    李秀信, 文沛瑶, 吉文丽, 等.超声波协同双水相体系提取水榆花楸叶总黄酮工艺[J].西北林学院学报, 2017, 32(5):252-256. doi: 10.3969/j.issn.1001-7461.2017.05.42

    Li X X, Wen P Y, Ji W L, et al. Optimization of ultrasonic assisted aqueous two-phase extraction technology of total flavonoid from Sorbus alnifolia leaf[J]. Journal of Northwest Forestry University, 2017, 32(5): 252-256. doi: 10.3969/j.issn.1001-7461.2017.05.42
    [4]
    王亮.水榆花楸1年生苗生长过程的研究[J].防护林科技, 2016(2):12-14. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201602005

    Wang L. Growth process of one-year-old Sorbus alnifolia seedlings[J]. Protection Forest Science and Technology, 2016(2): 12-14. http://d.old.wanfangdata.com.cn/Periodical/fhlkj201602005
    [5]
    宋洪文, 张象君, 辛宝英, 等.水榆花楸微型繁殖技术的研究[J].安徽农业科学, 2013, 41(5):1898-1899. doi: 10.3969/j.issn.0517-6611.2013.05.006

    Song H W, Zhang X J, Xin B Y, et al. Study on micro propagation technology of Sorbus alnifolia[J]. Journal of Anhui Agricultural Sciences, 2013, 41(5): 1898-1899. doi: 10.3969/j.issn.0517-6611.2013.05.006
    [6]
    卞付萍.干旱胁迫下水榆花楸生长及生理特性的研究[D].南京: 南京林业大学, 2014.

    Bian F P. Effects of drought stress on the growth and physiological characteristics of Sorbus alnifolia[D]. Nanjing: Nanjing Forestry University, 2014.
    [7]
    张红星.水榆花楸种子休眠和幼苗生理特性研究[D].南京: 南京林业大学, 2010.

    Zhang H X. Studies on seed dormancy and seedling physiological characteristics of Sorbus alnifolia[D]. Nanjing: Nanjing Forestry University, 2010.
    [8]
    邱靖, 伊贤贵, 汤庚国, 等.黄山水榆花楸群落结构分析[J].四川农业大学学报, 2016, 34(3):304-311. http://d.old.wanfangdata.com.cn/Periodical/scnydxxb201603008

    Qiu J, Yi X G, Tang G G, et al. Analysis od community structure of Sorbus alnifolia in Huangshan Mountain[J]. Journal of Sichuan Agricultural University, 2016, 34(3): 304-311. http://d.old.wanfangdata.com.cn/Periodical/scnydxxb201603008
    [9]
    Anderson R P. A framework for using niche models to estimate impacts of climate change on species distributions[J]. Annals of the New York Academy of Sciences, 2013, 1297(1): 8-28. doi: 10.1111/nyas.2013.1297.issue-1
    [10]
    曹福祥, 徐庆军, 曹受金, 等.全球变暖对物种分布的影响研究进展[J].中南林业科技大学学报, 2008, 28(6):86-89. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb200806019

    Cao F X, Xu Q J, Cao S J, et al. Advances of global warming impact on species distribution[J]. Journal of Central South University of Forestry & Technology, 2008, 28(6): 86-89. http://d.old.wanfangdata.com.cn/Periodical/znlxyxb200806019
    [11]
    Wang W G, Tang X Y, Zhu Q L, et al. Predicting the impacts of climate change on the potential distribution of major native non-food bioenergy plants in China[J]. PLos One, 2014, 9(11): 1-11.
    [12]
    Xu Y, Shen Z H, Ying L X, et al. Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China[J]. Scientific Reports, 2017, 7(1): 1-10. doi: 10.1038/s41598-016-0028-x
    [13]
    Hijmans R J, Guarino L, Cruz M, et al. Computer tools for spatial analysis of plant genetic resources data(1): DIVA-GIS[J]. Plant Genetic Resources Newsletter, 2001, 127: 15-19.
    [14]
    Hijmans R J, Spooner D M. Geographic distribution of wild potato species[J]. American Journal of Botany, 2001, 88(11): 2101-2112. doi: 10.2307/3558435
    [15]
    姜建福, 樊秀彩, 张颖, 等.中国三种濒危葡萄属(Vitis L.)植物的地理分布模拟[J].生态学杂志, 2014, 33(6):1615-1622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201406028

    Jiang J F, Fan X C, Zhang Y, et al. Modeling the geographic distribution of three endangered Vitis species in China[J]. Chinese Journal of Ecology, 2014, 33(6): 1615-1622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201406028
    [16]
    朱弘, 尤禄祥, 李涌福, 等.浙闽樱桃地理分布模拟及气候限制因子分析[J].热带亚热带植物学报, 2017, 25(4):315-322. http://d.old.wanfangdata.com.cn/Periodical/rdyrdzwxb201704001

    Zhu H, You L X, Li Y F, et al. Modeling the geographical distribution pattern and climatic limited factors of Cerasus schneideriana[J]. Journal of Tropical and Subtropical Botany, 2017, 25(4): 315-322. http://d.old.wanfangdata.com.cn/Periodical/rdyrdzwxb201704001
    [17]
    张兴旺, 李垚, 方炎明.麻栎在中国的地理分布及潜在分布区预测[J].西北植物学报, 2014, 34(8):1685-1692. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201408025

    Zhang X W, Li Y, Fang Y M. Geographical distribution and prediction of potential ranges of Quercus acutissimain China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1685-1692. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201408025
    [18]
    王娟, 倪健.中国北方温带地区5种锦鸡儿植物的分布模拟[J].植物生态学报, 2009, 33(1):12-24. doi: 10.3773/j.issn.1005-264x.2009.01.002

    Wang J, Ni J. Modeling the distribution of Caragana species in temperate northern China[J]. Chinese Journal of Plant Ecology, 2009, 33(1): 12-24. doi: 10.3773/j.issn.1005-264x.2009.01.002
    [19]
    朱耿平, 范靖宇, 王梦琳, 等.ROC曲线形状在生态位模型评价中的重要性:以美国白蛾为例[J].生物安全学报, 2017, 26(3):184-190. doi: 10.3969/j.issn.2095-1787.2017.03.002

    Zhu G P, Fan J Y, Wang M L, et al. The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation-case study of Hlyphantria cunea[J]. Journal of Biosafety, 2017, 26(3): 184-190. doi: 10.3969/j.issn.2095-1787.2017.03.002
    [20]
    Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 2006, 43(6): 1223-1232. doi: 10.1111/jpe.2006.43.issue-6
    [21]
    张超, 陈磊, 田呈明, 等.基于GARP和MaxEnt的云杉矮槲寄生分布区的预测[J].北京林业大学学报, 2016, 38(5):23-32. doi: 10.13332/j.1000-1522.20150516

    Zhang C, Chen L, Tian C M, et al. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. doi: 10.13332/j.1000-1522.20150516
    [22]
    张琴, 张东方, 吴明丽, 等.基于生态位模型预测天麻全球潜在适生区[J].植物生态学报, 2017, 41(7):770-778. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201707007

    Zhang Q, Zhang D F, Wu M L, et al. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Acta Phytoecologica Sinica, 2017, 41(7): 770-778. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201707007
    [23]
    谢彩香, 张琴, 白光宇.木本能源植物文冠果的生态特征及区划[J].植物科学学报, 2018, 36(2):229-236. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201802010

    Xie C X, Zhang Q, Bai G Y. Ecological characteristics and regionalization of Xanthoceras sorbifolia Bunge, a woody energy plant[J]. Plant Science Journal, 2018, 36(2): 229-236. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj201802010
    [24]
    张琴, 宋经元, 邵飞, 等.防风固沙优良树种欧李的潜在适生区及生态特征[J].北京林业大学学报, 2018, 40(3):66-74. doi: 10.13332/j.1000-1522.20170180

    Zhang Q, Song J Y, Shao F, et al. Potential suitable distribution area and ecological characteristics of Cerasus humilis, an excellent tree species for windproof and sand fixation[J]. Journal of Beijing Forestry University, 2018, 40(3): 66-74. doi: 10.13332/j.1000-1522.20170180
    [25]
    张红星, 张硕新, 雷瑞德.火地塘油松群落中9种植物光合特性研究[J].西北林学院学报, 2005, 20(1):20-24. doi: 10.3969/j.issn.1001-7461.2005.01.005

    Zhang H X, Zhang S X, Lei R D. The photosynthetic characteristics of nine plants in community of Pinus tabuliformis at huoditang forest region[J]. Journal of Northwest Forestry University, 2005, 20(1): 20-24. doi: 10.3969/j.issn.1001-7461.2005.01.005
    [26]
    杭红涛, 吴沿友, 邢德科, 等.贵州玉舍国家森林公园三种造林植物光合生理特征研究[J].广西植物, 2018, 38(1):36-47. http://d.old.wanfangdata.com.cn/Periodical/gxzw201801004

    Hang H T, Wu Y Y, Xing D K, et al. Photosynthetic physiology characteristics of three afforestation tree species in Guizhou Yushe National Forest Park[J]. Guihaia, 2018, 38(1): 36-47. http://d.old.wanfangdata.com.cn/Periodical/gxzw201801004
    [27]
    Pedro S, Miguel B A. An evaluation of methods for modelling species distributions[J]. Journal of Biogeography, 2004, 31(10): 1555-1568. doi: 10.1111/jbi.2004.31.issue-10
    [28]
    邵慧, 田佳倩, 郭柯, 等.样本容量和物种特征对BIOCLIM模型模拟物种分布准确度的影响:以12个中国特有落叶栎树种为例[J].植物生态学报, 2009, 33(5):870-877. doi: 10.3773/j.issn.1005-264x.2009.05.005

    Shao H, Tian J Q, Guo K, et al. Effects of sample size and species traits on performance of bioclim in predicting geographical distribution of tree species: a case study with 12 deciduous Quercus species indigenous to China[J]. Chinese Journal of Plant Ecology, 2009, 33(5): 870-877. doi: 10.3773/j.issn.1005-264x.2009.05.005
  • Related Articles

    [1]Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374
    [2]Feng Lei, Xu Wanli, Tang Guangmu, Zhang Yunshu, Gu Meiying. Characteristics of Lycium ruthenicum adapting to salinization stress after salt tolerance training[J]. Journal of Beijing Forestry University, 2020, 42(12): 83-90. DOI: 10.12171/j.1000-1522.20200123
    [3]Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063
    [4]Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438
    [5]Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258
    [6]Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086
    [7]LI Qiang, YANG Hong-qiang, SHEN Wei. Polyamine content and effects of spermine and spermidine on lipid peroxidation induced by salt stress in Malus hupehensis Rehd.[J]. Journal of Beijing Forestry University, 2011, 33(6): 173-176.
    [8]LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46.
    [9]YAN Hui, XIA Xin-li, GAO Rong-fu, YIN Wei-lun. Primary response of plasma membrane potential on root caps of Ammopiptanthus mongolicus and Phaseolus radiatus to salt stress.[J]. Journal of Beijing Forestry University, 2008, 30(6): 16-21.
    [10]SONG Ying-qi, YANG Qian, QIN Gen-ji, QU Li-jia. AtPIP5K2 gene involved in regulating the sensitivity to salt stress of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2006, 28(5): 78-83.
  • Cited by

    Periodical cited type(9)

    1. 王博,杨雪清,蒋春颖,赖光辉,陈锋,刘晓东. 北京山区森林火灾蔓延风险评估. 生态学报. 2025(02): 813-821 .
    2. 马诚,王劲,韩正宝,王秋华. 滇东地区海寨林场针叶林地表可燃物潜在火行为研究. 消防科学与技术. 2024(02): 265-270 .
    3. 张晓迪,李明泽,王斌,吴泽川,莫祝坤,范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化. 南京林业大学学报(自然科学版). 2023(06): 192-202 .
    4. 陈敏斯,杜建华,王薇,于海晨,王博,顾泽,刘晓东. 八达岭林场油松林冠层可燃物特征及潜在火行为. 北京林业大学学报. 2022(03): 55-64 . 本站查看
    5. 李炳怡,刘冠宏,舒立福. 北京门头沟区主要林分类型地表火行为模拟研究. 北京林业大学学报. 2022(06): 96-105 . 本站查看
    6. 周宇飞,王振师,钟映霞,李强,吴泽鹏,李小川. 基于无人机高光谱遥感的森林可燃物分类方法研究. 林业与环境科学. 2022(05): 57-62 .
    7. 于海晨,王薇,杜建华,刘赵东,陈敏斯,王博,刘晓东. 油松和侧柏林地表可燃物负荷量及影响因素. 北京林业大学学报. 2021(06): 33-40 . 本站查看
    8. 李国辉,王昆伦,许行健,白磊,马瑞杰,陈宏刚,李世友. 土壤有效磷含量对滇中地区5种常见针叶林理化性质的影响. 山东农业大学学报(自然科学版). 2021(04): 545-551 .
    9. 刘冠宏,李炳怡,宫大鹏,李伟克,刘晓东. 林火对北京平谷区油松林土壤化学性质的影响. 北京林业大学学报. 2019(02): 29-40 . 本站查看

    Other cited types(6)

Catalog

    Article views (3703) PDF downloads (90) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return