Citation: | Suo Huiying, Liu Jing, Qu Guanzheng, Zheng Mi, Li Ying. Establishment of protein differential expression map of Tamarix hispida leaves under NaHCO3 stress[J]. Journal of Beijing Forestry University, 2018, 40(9): 15-24. DOI: 10.13332/j.1000-1522.20180200 |
[1] |
Pan T T, Li W H, Chen Y P. The influence of salt stress on the accumulation of Na+ and K+ in Tamarix hispida[J]. Procedia Environmental Sciences, 2011, 10:1445-1451. doi: 10.1016/j.proenv.2011.09.231
|
[2] |
杨传平, 王玉成, 刘桂丰, 等.基因芯片技术研究柽柳NaHCO3胁迫下基因的表达[J].生物工程学报, 2005, 21(2):220-226. doi: 10.3321/j.issn:1000-3061.2005.02.010
Yang C P, Wang Y C, Liu G F, et al. Study on expression of genes in Tamarix androssowii under NaHCO3 stress using gene chip technology[J]. Chinese Journal of Biotechnology, 2005, 21(2):220-226. doi: 10.3321/j.issn:1000-3061.2005.02.010
|
[3] |
Li H Y, Wang Y C, Jiang J, et al. Identification of genes responsive to salt stress on Tamarix hispida roots[J]. Gene, 2009, 433:65-71. doi: 10.1016/j.gene.2008.12.007
|
[4] |
冯德明, 温佩颖, 赵畅, 等.刚毛柽柳ThDREB基因在酵母中的表达及抗逆能力分析[J].植物研究, 2017, 37(1):63-68.
Feng D M, Wen P Y, Zhao C, et al. Expression and stress tolerance charaterization of a ThDREB gene from Tamarix hispida in yeast [J]. Bulletin of Botanical Research, 2017, 37(1):63-68.
|
[5] |
Zang D D, Wang C, Ji X Y, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities [J]. Plant Science, 2015, 235:111-121. doi: 10.1016/j.plantsci.2015.02.016
|
[6] |
张玉, 张悦, 张春蕊, 等.刚毛柽柳腺苷甲硫氨酸脱羧酶(ThSAMDC)基因的克隆与胁迫下的表达分析[J].植物研究, 2018, 38(1):132-140. http://d.old.wanfangdata.com.cn/Periodical/zwyj201801017
Zhang Y, Zhang Y, Zhang C R, et al. Cloning and expression analysis of S-adenosine methionine decarboxylase (ThSAMDC) gene from Tamarix ramosissima[J]. Bulletin of Botanical Research, 2018, 38(1):132-140. http://d.old.wanfangdata.com.cn/Periodical/zwyj201801017
|
[7] |
Gygi S P, Rochon Y, Franza B R, et al. Correlation between protein and mRNA abundance in yeast [J]. Molecular Cellular Biology, 1999, 19:1720-30. doi: 10.1128/MCB.19.3.1720
|
[8] |
Bogeat-Triboulot M B, Brosché M, Renaut J, et al. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions[J]. Plant Physiol, 2007, 143:876-892. doi: 10.1104/pp.106.088708
|
[9] |
O'Farrell P H. High-resolution two dimensional electrophoresis of protein[J]. Journal of Biology Chemistry, 1975, 250: 4007-4021.
|
[10] |
Gorg A, Obermaier C, Boguth G, et al. Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins[J]. Electrophoresis, 1997, 18:328-337. doi: 10.1002/(ISSN)1522-2683
|
[11] |
Zhou Y, Wu X X, Zhang Z, et al. Comparative proteomic analysis of floral color variegation in peach [J]. Biochemical and Biophysical Research Communications, 2015, 464:1101-1106. doi: 10.1016/j.bbrc.2015.07.084
|
[12] |
Wei S S, Wang X Y, Zhang J W, et al. The role of nitrogen in leaf senescence of summer maize and analysis of underlying mechanisms using comparative proteomics[J]. Plant Science, 2015, 233:72-81. doi: 10.1016/j.plantsci.2015.01.002
|
[13] |
Maisnar V, Tichy M, Stulik J, et al.Capillary immunotyping electrophoresis and high resolution two-dimensional electrophoresis for the detection of μ-heavy chain disease[J]. Clinica Chimica Acta, 2008, 389:171-173. doi: 10.1016/j.cca.2007.10.035
|
[14] |
Marshall T, Williams K M. High resolution two-dimensional electrophoresis of human urinary proteins[J]. Analytica Chimica Acta, 1998, 372:147-160. doi: 10.1016/S0003-2670(98)00357-2
|
[15] |
Fang X P, Chen W Y, Xin Y, et al. Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae[J]. Journal of Proteomics, 2012, 75:4074-4090. doi: 10.1016/j.jprot.2012.05.022
|
[16] |
Zhang B, Xu C G, Zhou S M, et al. Comparative proteomic analysis of a Haemophilus parasuis SC096 mutant deficient in the outer membrane protein P5[J]. Microbial Pathogenesis, 2012, 52:117-124. doi: 10.1016/j.micpath.2011.11.002
|
[17] |
Shaw M M, Riederer B M. Sample preparation for two-dimensional gelelectrophoresis[J]. Proteomics, 2003, 3:1408-1417. doi: 10.1002/(ISSN)1615-9861
|
[18] |
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72:248-254. doi: 10.1016/0003-2697(76)90527-3
|
[19] |
严冬, 刘殿昆, 司冬晶, 等.适用于双向电泳的杨树叶片蛋白质提取方法的研究[J].植物研究, 2016, 36(3):469-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201603022
Yan D, Liu D K, Si D J, et al.Optional protein extracting methods of poplar leaves for two-dimensional gel electrophoresos[J]. Bulletin of Botanical Research, 2016, 36(3):469-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwyj201603022
|
[20] |
Suzuki N, Koussevitzky S, Mittler R, et al.ROS and redox signalling in the response of plants to abiotic stress[J]. Plant Cell & Environment, 2012, 35: 259-270.
|
[21] |
McClung C R, Davis S J. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing[J]. Current Biology, 2010, 20: 1086-1092. doi: 10.1016/j.cub.2010.04.042
|
[22] |
Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives[J]. Annual Reviews of Plant Biology, 2010, 61: 443-462. doi: 10.1146/annurev-arplant-042809-112116
|
[23] |
Ruelland E, Zachowski A.How plants sense temperature[J]. Environmental and Experimental Botany, 2010, 69: 225-232. doi: 10.1016/j.envexpbot.2010.05.011
|
[24] |
李红兵, 康振生.适于小麦叶片蛋白质组分析的样品提取方法研究[J].西北植物学报, 2011, 31(3):632-638. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201103033
Li H B, Kang Z S. Sample preparation methods suitable for wheat leaf proteome analysis[J].Acta Bot Boreal-Occident Sin, 2011, 31 (3):632-638. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201103033
|
[25] |
张恒, 戴绍军.植物盐胁迫应答蛋白质组学研究的技术策略[J].应用生态学报, 2011, 22(8): 2201-2210. http://d.old.wanfangdata.com.cn/Periodical/yystxb201108037
Zhang H, Dai S J.Technical strategies in the research of plant salt-responsive proteomics: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(8): 2201-2210. http://d.old.wanfangdata.com.cn/Periodical/yystxb201108037
|
[26] |
Chen S X, Harmon A C.Advances in plant proteomics[J]. Proteomics, 2006, 6: 5504-5516. doi: 10.1002/(ISSN)1615-9861
|
[27] |
喻娟娟, 戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报, 2009, 44(4): 410-425. doi: 10.3969/j.issn.1674-3466.2009.04.002
Yu J J, Dai S J.Research advances in plant proteomics[J]. Chinese Bulletin of Botany, 2009, 44(4): 410-425. doi: 10.3969/j.issn.1674-3466.2009.04.002
|
[1] | Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374 |
[2] | Feng Lei, Xu Wanli, Tang Guangmu, Zhang Yunshu, Gu Meiying. Characteristics of Lycium ruthenicum adapting to salinization stress after salt tolerance training[J]. Journal of Beijing Forestry University, 2020, 42(12): 83-90. DOI: 10.12171/j.1000-1522.20200123 |
[3] | Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063 |
[4] | Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438 |
[5] | Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258 |
[6] | Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086 |
[7] | LI Qiang, YANG Hong-qiang, SHEN Wei. Polyamine content and effects of spermine and spermidine on lipid peroxidation induced by salt stress in Malus hupehensis Rehd.[J]. Journal of Beijing Forestry University, 2011, 33(6): 173-176. |
[8] | LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46. |
[9] | YAN Hui, XIA Xin-li, GAO Rong-fu, YIN Wei-lun. Primary response of plasma membrane potential on root caps of Ammopiptanthus mongolicus and Phaseolus radiatus to salt stress.[J]. Journal of Beijing Forestry University, 2008, 30(6): 16-21. |
[10] | SONG Ying-qi, YANG Qian, QIN Gen-ji, QU Li-jia. AtPIP5K2 gene involved in regulating the sensitivity to salt stress of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2006, 28(5): 78-83. |
1. |
王博,杨雪清,蒋春颖,赖光辉,陈锋,刘晓东. 北京山区森林火灾蔓延风险评估. 生态学报. 2025(02): 813-821 .
![]() | |
2. |
马诚,王劲,韩正宝,王秋华. 滇东地区海寨林场针叶林地表可燃物潜在火行为研究. 消防科学与技术. 2024(02): 265-270 .
![]() | |
3. |
张晓迪,李明泽,王斌,吴泽川,莫祝坤,范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化. 南京林业大学学报(自然科学版). 2023(06): 192-202 .
![]() | |
4. |
陈敏斯,杜建华,王薇,于海晨,王博,顾泽,刘晓东. 八达岭林场油松林冠层可燃物特征及潜在火行为. 北京林业大学学报. 2022(03): 55-64 .
![]() | |
5. |
李炳怡,刘冠宏,舒立福. 北京门头沟区主要林分类型地表火行为模拟研究. 北京林业大学学报. 2022(06): 96-105 .
![]() | |
6. |
周宇飞,王振师,钟映霞,李强,吴泽鹏,李小川. 基于无人机高光谱遥感的森林可燃物分类方法研究. 林业与环境科学. 2022(05): 57-62 .
![]() | |
7. |
于海晨,王薇,杜建华,刘赵东,陈敏斯,王博,刘晓东. 油松和侧柏林地表可燃物负荷量及影响因素. 北京林业大学学报. 2021(06): 33-40 .
![]() | |
8. |
李国辉,王昆伦,许行健,白磊,马瑞杰,陈宏刚,李世友. 土壤有效磷含量对滇中地区5种常见针叶林理化性质的影响. 山东农业大学学报(自然科学版). 2021(04): 545-551 .
![]() | |
9. |
刘冠宏,李炳怡,宫大鹏,李伟克,刘晓东. 林火对北京平谷区油松林土壤化学性质的影响. 北京林业大学学报. 2019(02): 29-40 .
![]() |