Citation: | Yang Ruizhi, Ma Jingyong, Liang Chunxuan, Tian Yun, Jia Xin, Zha Tianshan. Analyses on water use characteristics of Salix psammophila based on sap flow and leaf water potential[J]. Journal of Beijing Forestry University, 2019, 41(11): 87-94. DOI: 10.13332/j.1000-1522.20180241 |
[1] |
Sperry J S, Hacke U G, Oren R, et al. Water deficits and hydraulic limits to leaf water supply[J]. Plant, Cell & Environment, 2002, 25(2): 251−263.
|
[2] |
Tyree M T, Sperry J S. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model[J]. Plant Physiology, 1988, 88(3): 574−580. doi: 10.1104/pp.88.3.574
|
[3] |
Zimmermann M H. Xylem structure and the ascent of sap[J]. Science, 2002, 222: 500−501.
|
[4] |
Sperry J S, Tyree M T. Water-stress-induced xylem embolism in three species of conifers[J]. Plant Cell & Environment, 1990, 13(5): 427−436.
|
[5] |
孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应[J]. 生态学报, 2009, 29(2):698−705. doi: 10.3321/j.issn:1000-0933.2009.02.018
Sun G C, Zhao P, Zeng X P, et al. Hydraulic responses of stomatal conductance in leaves of successional tree species in subtropical forest to environmental moisture[J]. Acta Ecologica Sinica, 2009, 29(2): 698−705. doi: 10.3321/j.issn:1000-0933.2009.02.018
|
[6] |
Comstock J, Mencuccini M. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. & G.), a desert subshrub[J]. Plant Cell & Environment, 2010, 21(10): 1029−1038.
|
[7] |
Oren R, Sperry J S, Katul G G, et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit[J]. Plant, Cell & Environment, 2010, 22(12): 1515−1526.
|
[8] |
Stocker O. Die abhängigkeit der transpiration von den umweltfaktoren[M]// Pflanze und wasser/ water relations of plants. Berlin: Springer, 1956.
|
[9] |
Jones H G. Stomatal control of photosynthesis and transpiration[M]// Illustrated guide to surgical practice. Churchill: Livingstone, 1998: 387−398.
|
[10] |
Tardieu F, Simonneau T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours[J]. Journal of Experimental Botany, 1998, 49(2): 419−432.
|
[11] |
McDowell N G, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178: 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
|
[12] |
Domec J C, Johnson D M. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?[J]. Tree Physiology, 2012, 32(3): 245. doi: 10.1093/treephys/tps013
|
[13] |
Martínez-Vilalta J, Poyatos R, Aguadé D, et al. A new look at water transport regulation in plants[J]. New Phytologist, 2015, 204(1): 105−115.
|
[14] |
Campbell G S, Norman J M. An introduction to environmental biophysics[J]. Biologia Plantarum, 1979, 21(2): 104−104. doi: 10.1007/BF02909456
|
[15] |
李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301−305. doi: 10.3321/j.issn:1001-9332.2000.02.037
Li J Y, Zhai H B. Hydraulic architecture and drought resistance of woody plants[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 301−305. doi: 10.3321/j.issn:1001-9332.2000.02.037
|
[16] |
Michael G R, Barbara J Y. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi: 10.2307/1313077
|
[17] |
Hubbard R M, Bond B J, Ryan M G. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees[J]. Tree Physiology, 1999, 19: 165−172. doi: 10.1093/treephys/19.3.165
|
[18] |
Tyree M T , Sperry J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40(40): 19−38.
|
[19] |
翟洪波, 李吉跃,李保华, 等. Darcy定律在测定油松木质部导特征中的应用[J]. 北京林业大学学报, 2001, 23(4):6−9. doi: 10.3321/j.issn:1000-1522.2001.04.002
Zhai H B, Li J Y, Li B H, et al. Application of Darcy's laws in testing water conductivity characteristics of Pinus tabulaeformis xylem[J]. Journal of Beijing Forestry University, 2001, 23(4): 6−9. doi: 10.3321/j.issn:1000-1522.2001.04.002
|
[20] |
Saliendra N Z, Sperry J S, Comstock J P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis[J]. Planta, 1995, 196(2): 357−366.
|
[21] |
王珊, 查天山, 贾昕, 等. 毛乌素沙地油蒿群落冠层导度及影响因素[J]. 北京林业大学学报, 2017, 39(3):65−73.
Wang S, Zha T S, Jia X, et al. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65−73.
|
[22] |
安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J]. 生态学报, 2005, 25(8):1928−1933. doi: 10.3321/j.issn:1000-0933.2005.08.014
An F, Zhang S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8): 1928−1933. doi: 10.3321/j.issn:1000-0933.2005.08.014
|
[23] |
Mencuccini M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms[J]. Plant Cell & Environment, 2003, 26(1): 163−182.
|
[24] |
Meinzer F C. Co-ordination of vapour and liquid phase water transport properties in plants[J]. Plant Cell & Environment, 2002, 25(2): 265−274.
|
[25] |
Brodribb T J, Holbrook N M, Edwards E J, et al. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees[J]. Plant Cell & Environment, 2003, 26(3): 443−450.
|
[26] |
Willigen C V D, Pammenter N W. Relationship between growth and xylem hydraulic characteristics of clones of Eucalyptus spp. at contrasting sites[J]. Tree Physiology, 1998, 18(8−9): 595.
|
[27] |
Granier A, Loustau D, Bréda N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index[J]. Annals of Forest Science, 2000, 57(8): 755−765. doi: 10.1051/forest:2000158
|
[28] |
Lu P, Biron P, Granier A, et al. Water relations of adult Norway spruce (Picea abies (L.) Karst) under soil drought in the Vosges mountains: whole-tree hydraulic conductance, xylem embolism and water loss regulation[J]. Annales Des Sciences Forestieres, 1996, 53(1): 113−121. doi: 10.1051/forest:19960108
|
[29] |
Irvine J, Perks M P, Magnani F, et al. The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance[J]. Tree Physiology, 1998, 18(6): 393−402. doi: 10.1093/treephys/18.6.393
|
[30] |
McDowell N G. Mechanisms linking drought, hydraulics, carbon etabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155: 1051−1059. doi: 10.2307/41434180
|
[1] | Xu Jingliang, Zhu Jiyou, Yan Xiangru, Xu Chengyang. Effects of urban heat island intensity on leaf water-relevant traits of greening tree species with different leaf textures[J]. Journal of Beijing Forestry University, 2024, 46(9): 97-106. DOI: 10.12171/j.1000-1522.20230254 |
[2] | Pan Mengting, Zhang Dehuai, Gao Na, Xu Mingze, Li Xinhao, Tian Yun, Liu Peng, Jia Xin, Zha Tianshan. Dynamics and environmental regulation of the maximum leaf water use efficiency of Vitex negundo var. heterophylla during growing season[J]. Journal of Beijing Forestry University, 2023, 45(6): 52-61. DOI: 10.12171/j.1000-1522.20220347 |
[3] | Xu Zhenxin, Deng Yusong, Lin Liwen, Liu Deyang, Jiang Daihua, Huang Zhigang, Wei Guoyu. Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone[J]. Journal of Beijing Forestry University, 2021, 43(4): 100-107. DOI: 10.12171/j.1000-1522.20200124 |
[4] | Ao Jiakun, Niu Jianzhi, Xie Baoyuan, Luo Ziteng, Lin Xingna, Yang Lan. Influence of soil macropore structure on saturated hydraulic conductivity[J]. Journal of Beijing Forestry University, 2021, 43(2): 102-112. DOI: 10.12171/j.1000-1522.20190429 |
[5] | Li Xin, Li Shan, Deng Liping, Li Ren, Yin Yafang, Zheng Jingming. Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei[J]. Journal of Beijing Forestry University, 2020, 42(1): 27-34. DOI: 10.12171/j.1000-1522.20190238 |
[6] | SHEN Fang-fang, FAN Hou-bao, WU Jian-ping, LIU Wen-fei, LEI Xue-ming, LEI Xue-chen. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124. DOI: 10.13332/j.1000-1522.20170142 |
[7] | WANG Shan, ZHA Tian-shan, JIA Xin, WU Ya-juan, BAI Yu-jie, FENG Wei. Temporal variation and controlling factors of canopy conductance in Artemisia ordosica community[J]. Journal of Beijing Forestry University, 2017, 39(3): 65-73. DOI: 10.13332/j.1000-1522.20160409 |
[8] | WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457 |
[9] | YU Lu, SU De-rong, LIU Yi-shan. Characters of leaf water absorption for three turfgrasses.[J]. Journal of Beijing Forestry University, 2013, 35(3): 97-101. |
[10] | SONG Gui-long, HAN Lie-bao, LI De-ying. Hydraulic conductivity characteristics of rootzones at different ratios of sand to soil[J]. Journal of Beijing Forestry University, 2008, 30(4): 89-94. |
1. |
吴昊晟,武威,胡兴国,杨东海,吴蕴洋,杨玲. 红松全同胞家系子代早期生长评价及选择. 森林工程. 2024(05): 94-102 .
![]() | |
2. |
武威,吴昊晟,杨东海,孙素芹,李士成,林玲,杨玲. 不同种源西伯利亚红松生长性状分析与评价. 西北林学院学报. 2024(05): 126-134 .
![]() |