• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ou Xuebing, Song Jie, Lu Qunxia, Hu Chuanshuang, Wang Qing. Analysis and selection of gas spring of closet-type 0−90° foldable bed[J]. Journal of Beijing Forestry University, 2019, 41(6): 147-153. DOI: 10.13332/j.1000-1522.20190009
Citation: Ou Xuebing, Song Jie, Lu Qunxia, Hu Chuanshuang, Wang Qing. Analysis and selection of gas spring of closet-type 0−90° foldable bed[J]. Journal of Beijing Forestry University, 2019, 41(6): 147-153. DOI: 10.13332/j.1000-1522.20190009

Analysis and selection of gas spring of closet-type 0−90° foldable bed

More Information
  • Received Date: January 11, 2019
  • Revised Date: March 27, 2019
  • Available Online: May 24, 2019
  • Published Date: May 31, 2019
  • ObjectiveThe foldable bed is an important technology of the small apartment to realize the dual-use function. The selection of gas spring is mainly based on " wrong-trial”, which is lacking theoretical support and practical guidance. In order to shorten the production cycle and improve product reliability, it is especially important to conduct a theory research.
    MethodIn this study, the foldable bed was taken as the research object, and its limit working conditions were set according to the actual working conditions. Based on statics and torque balance principle in theoretical mechanics, combined with the gas spring motion characteristic curve and its technical standards, the force analysis of the foldable bed and its gas spring was conducted under the limit working conditions of the foldable bed to complete the selection of the gas spring. The optimal install location of the gas spring on the bed was obtained using two intersecting circles. The force analysis of the bed at random foldable angles was analyzed and its motion curve was simulated via CAD-aided measuring tools.
    Result This study set up the analysis and calculation theory of the gas spring of the foldable bed. Starting with two limit states of the use and storage, the theory to obtain minimum extension force, stroke and installation position of the gas spring was established; furthermore, the foldable bed at random foldable angle was analyzed and calculated. The motion law and the analysis method of the hover angle were obtained. This study took the common bed size (900 mm wide, 1 900 mm long) , 300 mm depth as an example, the minimum extension force, the stroke, the elastic coefficient, and the range of hover scope of the gas spring were 428 N, 190 mm, 1.06, and 18°−24°.
    Conclusion The analytical methods and results constructed in this study can provide theoretical support and practical guidance for the design, selection and performance analysis of foldable bed in the furniture industry. For the determination of the size and installation position of the gas spring, the force analysis of the sideboard of the foldable bed can be further carried out by means of finite element analysis, so as to optimize the selection of the force arm of the gas spring.
  • [1]
    中华人民共和国建设部. 关于落实新建住房结构比例要求的若干意见[J]. 中国勘察设计, 2006(12):6−7.

    Ministry of Construction. Some opinions on the implementation of the requirements on the proportion of newly-built housing structure[J]. China Engineering & Consulting, 2006(12): 6−7.
    [2]
    张帆. 基于有限元法的实木框架式家具结构力学研究[D]. 北京: 北京林业大学, 2012.

    Zhang F. Research on structural mechanics of solid wood framework furniture based on finite element method[D]. Beijing: Beijing Forestry University, 2012.
    [3]
    张琦, 葛思擘. 新型支承−气弹簧的结构与特性分析[J]. 机械科学与技术, 1995, 14(6):85−89.

    Zhang Q, Ge S B. Analysis of structure and characteristics of a new type of supporting-air spring[J]. Mechanical Science and Technology for Aerospace Engineering, 1995, 14(6): 85−89.
    [4]
    王殿武. 四连杆铰链气弹簧助力式开启机构的设计[J]. 汽车技术, 1999(5):7−9.

    Wang D W. Design of four-link hinge air-spring assisted opening mechanism[J]. Automobile Technology, 1999(5): 7−9.
    [5]
    刘迎林, 张有忱, 秦柳, 等. 全塑车身后备箱气撑杆运动仿真[J]. 塑料, 2015, 44(2):104−107. doi: 10.3969/j.issn.1001-3539.2015.02.025

    Liu Y L, Zhang Y C, Qin L, et al. Movtion simulation of all plastic body trunk pneumatic spring[J]. Plastics, 2015, 44(2): 104−107. doi: 10.3969/j.issn.1001-3539.2015.02.025
    [6]
    王定虎. 汽车背门气撑杆布置校核研究[J]. 内燃机与配件, 2018(22):99−101. doi: 10.3969/j.issn.1674-957X.2018.22.051

    Wang D H. Research on the layout check of gas strut on the back door of automobile[J]. Internal Combustion Engine & Parts, 2018(22): 99−101. doi: 10.3969/j.issn.1674-957X.2018.22.051
    [7]
    国家质检总局(CN−GB). 压缩气弹簧技术条件: GB 25751—2010[S]. 北京: 中国标准出版社, 2010.

    National Bureau of Quality Inspection (CN−GB). Compression gas spring technical specification: GB 25751—2010[S]. Beijing: Standards Press of China, 2010.
    [8]
    李亮辉. 浅析工程机械用气弹簧的设计选型[J]. 工程机械, 2013, 44(6):37−39. doi: 10.3969/j.issn.1000-1212.2013.06.009

    Li L H. Design and selection of gas spring for construction machinery[J]. Construction Machinery and Equipment, 2013, 44(6): 37−39. doi: 10.3969/j.issn.1000-1212.2013.06.009
    [9]
    谭能堃, 王治杰. SUV掀背门气撑杆布置与优化[J]. 科技传播, 2013, 5(7):94−95.

    Tan N K, Wang Z J. Layout and optimization of pneumatic brace for SUV hatchback door[J]. Public Communication of Science & Technology, 2013, 5(7): 94−95.
    [10]
    国家质量技术监督局. 弹簧术语: GB/T 1805—2001[S]. 北京: 中国标准出版社, 2001.

    The State Bureau of Quality and Technical Supervision. Nomenclature of springs: GB/T 1805—2001[S]. Beijing: Standards Press of China, 2001.
    [11]
    蒲蕾, 杨明华. 气弹簧在汽车后背门上的优化布置[J]. 汽车工程师, 2016(2):47−50. doi: 10.3969/j.issn.1674-6546.2016.02.010

    Pu L, Yang M H. Optimal arrangement of air spring on the back door of automobile[J]. Auto Engineer, 2016(2): 47−50. doi: 10.3969/j.issn.1674-6546.2016.02.010
    [12]
    行业标准−机械(CN−JB). 气弹簧设计计算: JB/T 10418—2004[S]. 北京: 中国标准出版社, 2004.

    Industry standard−Machinery (CN−JB). Gas springs specification: JB/T 10418—2004[S]. Beijing: Standards Press of China, 2004.
  • Related Articles

    [1]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [2]Liu Wenlan, Sun Xuegang, Jiao Jian, Tian Qing, Cao Wenxia, Ma Shanhu. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in the soil and leaves of Tamarix austromongolica of the wetland in Lanzhou section of the Yellow River[J]. Journal of Beijing Forestry University, 2023, 45(6): 43-51. DOI: 10.12171/j.1000-1522.20220379
    [3]Wang Hui, Wang Jian, Yang Yujing, Chen Lin, Liu Shirong. Effects of throughfall reduction on soil organic carbon concentration and chemical compositions in the Castanopsis hystrix plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 102-111. DOI: 10.12171/j.1000-1522.20220191
    [4]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [5]Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295
    [6]Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. DOI: 10.13332/j.1000-1522.20190029
    [7]Zhang Cancan, Wu Xiaogang, Liu Bin, Shi Xuewen, Chen Fusheng, Qiu Lihong, Bu Wensheng. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383
    [8]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [9]HUANG Xiao-hui, FENG Da-lan, ZHU Heng-xing, GENG Yang-hui, CHEN Dao-jing. Composition and content of soil organic carbon in Pinus massoniana pure forest in the Three Gorges Reservoir Area of central China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 38-43.
    [10]TU Cheng-long, LIU Cong-qiang, WU Yong-feng, WANG Yi. Discussing variance of forest soil organic carbon by analysis of δ13C[J]. Journal of Beijing Forestry University, 2008, 30(5): 1-6.
  • Cited by

    Periodical cited type(36)

    1. 张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
    2. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    3. 董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
    4. 包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
    5. 拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
    6. 刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
    7. 邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
    8. 阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
    9. 刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
    10. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    11. 阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
    12. 王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
    13. 王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
    14. 徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
    15. 曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
    16. 韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
    17. 王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
    18. 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
    19. 黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
    20. 王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
    21. 林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
    22. 白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
    23. 周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
    24. 白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
    25. 魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
    26. 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
    27. 李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
    28. 王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
    29. 任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
    30. 曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
    31. 陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
    32. 张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
    33. 阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 . 本站查看
    34. 曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
    35. 阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
    36. 王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 . 本站查看

    Other cited types(22)

Catalog

    Article views (2610) PDF downloads (47) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return